
 

Introduction to geospatial analysis using 

Python tools and Adzuna data 

Transcript from webinar video recording 
 

1 

00:00:01,685 --> 00:00:04,346 

So, in this webinar, 

 

2 

00:00:04,446 --> 00:00:09,178 

we are going to use Adzuna datasets. 

 

3 

00:00:09,860 --> 00:00:13,402 

I'll briefly show you all the information. 

 

4 

00:00:13,502 --> 00:00:17,555 

So, Adzuna is a job aggregator website 

 

5 

00:00:18,767 --> 00:00:23,730 

which has about 95 [percent of] job listing coverage in the UK. 

 

6 

00:00:23,830 --> 00:00:25,037 



So, it's really easy to use. 

 

7 

00:00:25,137 --> 00:00:28,776 

You just search by job, company, or location 

 

8 

00:00:29,597 --> 00:00:33,689 

and you get an aggregation from different sites listed there. 

 

9 

00:00:35,470 --> 00:00:38,969 

So, there are two datasets. 

 

10 

00:00:39,521 --> 00:00:42,982 

One is open, collected using an Adzuna API. 

 

11 

00:00:43,476 --> 00:00:45,738 

I added all the links in the presentation 

 

12 

00:00:45,916 --> 00:00:48,069 

so you can follow along as well. 

 

13 

00:00:48,182 --> 00:00:52,473 

So, if you wish to collect open Adzuna datasets, 

 

14 



00:00:52,573 --> 00:00:56,435 

you can register for an API, 

 

15 

00:00:57,328 --> 00:00:59,408 

receive the key, and just collect the data yourself. 

 

16 

00:01:00,398 --> 00:01:04,839 

And this data, it's free and open data. 

 

17 

00:01:05,572 --> 00:01:09,549 

To reduce the size of it, it has been subselected to location_area_1 

 

18 

00:01:09,779 --> 00:01:10,919 

containing Scotland value. 

 

19 

00:01:11,019 --> 00:01:12,468 

It's only sample data, 

 

20 

00:01:14,283 --> 00:01:15,882 

mainly because of its size. 

 

21 

00:01:16,421 --> 00:01:21,480 

But I'd also like to introduce a licensed dataset available 

 



22 

00:01:21,580 --> 00:01:25,596 

for academic use at the Urban Big Data Centre website. 

 

23 

00:01:27,266 --> 00:01:30,093 

So, click. So, this dataset is 

 

24 

00:01:30,462 --> 00:01:31,740 

cleaned and duplicated. 

 

25 

00:01:32,678 --> 00:01:35,557 

The only thing is you would need to apply for data to access it. 

 

26 

00:01:35,657 --> 00:01:39,716 

So, the difference between these two data is one is open, 

 

27 

00:01:40,775 --> 00:01:44,113 

it's messy, let's say, 

 

28 

00:01:44,793 --> 00:01:46,422 

due to its nature of scraping, 

 

29 

00:01:46,691 --> 00:01:50,480 

but there is work that could be done to derive insights. 



 

30 

00:01:50,580 --> 00:01:53,290 

And the reason why this data is available for academic use, 

 

31 

00:01:53,508 --> 00:01:58,359 

it has been deduplicated, cleaned up, and nicely formatted. 

 

32 

00:01:58,719 --> 00:02:01,489 

The other thing is, in the data, 

 

33 

00:02:02,937 --> 00:02:07,171 

because the description field containing information about the job ad, 

 

34 

00:02:07,629 --> 00:02:10,756 

and in open data, it's truncated to 500 characters. 

 

35 

00:02:10,856 --> 00:02:16,946 

So, quite often it's only a fraction of the job ad itself. 

 

36 

00:02:18,015 --> 00:02:22,384 

Right. In this lab or training, 

 

37 

00:02:22,484 --> 00:02:24,922 



we are going to use GeoPandas, 

 

38 

00:02:25,261 --> 00:02:27,438 

which is an open source project 

 

39 

00:02:27,538 --> 00:02:32,436 

which extends Pandas' frame as like a series of data frames 

 

40 

00:02:32,667 --> 00:02:34,967 

to GeoSeries and GeoDataFrame. 

 

41 

00:02:35,137 --> 00:02:37,694 

And the main difference between those two is that 

 

42 

00:02:38,660 --> 00:02:42,236 

GeoDataFrame has a special column, geometry. 

 

43 

00:02:42,347 --> 00:02:45,705 

Again, I've added the link for documentation 

 

44 

00:02:45,805 --> 00:02:47,794 

if you want to explore further. 

 

45 



00:02:49,533 --> 00:02:52,533 

So, let's start to open the data. 

 

46 

00:02:52,633 --> 00:02:55,582 

And I'm going to run this session alongside with you. 

 

47 

00:02:55,790 --> 00:03:00,051 

So, on this step, we are going to import Pandas 

 

48 

00:03:00,518 --> 00:03:01,795 

to open our dataset, 

 

49 

00:03:02,263 --> 00:03:06,029 

add the data provided, really the first data provided, 

 

50 

00:03:06,129 --> 00:03:07,696 

using parquet format, 

 

51 

00:03:08,658 --> 00:03:10,835 

which is an open source file format 

 

52 

00:03:11,234 --> 00:03:15,822 

which is designed to efficiently store the information. 

 



53 

00:03:17,302 --> 00:03:20,039 

I have included more information about 

 

54 

00:03:20,954 --> 00:03:23,822 

how it works, its specifications, and other things. 

 

55 

00:03:25,295 --> 00:03:28,400 

So, in this lab, we are using it because of 

 

56 

00:03:28,500 --> 00:03:29,741 

the size of the data. 

 

57 

00:03:29,841 --> 00:03:32,722 

So, it was just more convenient to pack it in a parquet 

 

58 

00:03:32,822 --> 00:03:34,344 

and share it with you. 

 

59 

00:03:37,916 --> 00:03:40,525 

So, I'm specifying my data source 

 

60 

00:03:41,536 --> 00:03:43,497 

and I'm going to open it. 



 

61 

00:03:44,598 --> 00:03:45,968 

Right. Let's do it like this. 

 

62 

00:03:46,709 --> 00:03:49,653 

My source and load it to Pandas GeoDataFrame. 

 

63 

00:03:52,253 --> 00:03:54,734 

Let's have a look at the data frame. 

 

64 

00:03:58,415 --> 00:04:02,330 

So, this is what our Adzuna data looks like. 

 

65 

00:04:02,430 --> 00:04:04,492 

It does have information about 

 

66 

00:04:05,393 --> 00:04:08,873 

the job title, its category and tag. 

 

67 

00:04:08,973 --> 00:04:11,402 

This is, by the way, created by Adzuna. 

 

68 

00:04:13,029 --> 00:04:18,298 



There is some categorisation of the data available in open data. 

 

69 

00:04:19,169 --> 00:04:22,868 

The dataset has information about contract type, 

 

70 

00:04:22,968 --> 00:04:25,186 

well, in some cases. 

 

71 

00:04:25,697 --> 00:04:27,935 

Information about minimum salary. 

 

72 

00:04:28,765 --> 00:04:29,966 

About description. 

 

73 

00:04:30,066 --> 00:04:33,245 

As I mentioned before, it's truncated to 500 characters. 

 

74 

00:04:34,595 --> 00:04:37,851 

The date it was created and location information. 

 

75 

00:04:41,862 --> 00:04:45,570 

So, in this lab, we are going to use longitude and latitude 

 

76 



00:04:45,805 --> 00:04:47,864 

to make this data spatial. 

 

77 

00:04:50,014 --> 00:04:54,334 

So, before we do any kind of GIS, 

 

78 

00:04:54,951 --> 00:04:57,399 

analysis of GIS, we are just going to look at the data 

 

79 

00:04:57,588 --> 00:04:58,617 

and try to import it. 

 

80 

00:04:58,717 --> 00:04:59,906 

So, in this lab, 

 

81 

00:05:02,906 --> 00:05:05,965 

on this step, I'm going to use Seaborn library 

 

82 

00:05:07,390 --> 00:05:10,088 

for visualisation. You can see why shortly. 

 

83 

00:05:10,188 --> 00:05:14,446 

It has very nice jointplot, type of visualisation 

 



84 

00:05:15,400 --> 00:05:19,429 

to really showcase geographical data. 

 

85 

00:05:19,627 --> 00:05:21,210 

And I'm going to use contextily, 

 

86 

00:05:21,310 --> 00:05:23,877 

it's a library which provides background mapping. 

 

87 

00:05:24,214 --> 00:05:28,835 

So, on this line, I specify that I want to create this type of plot, 

 

88 

00:05:28,935 --> 00:05:30,643 

or the jointplot, 

 

89 

00:05:30,991 --> 00:05:35,727 

where X would be longitude and Y latitude from my data frame. 

 

90 

00:05:36,227 --> 00:05:39,302 

By default, I think, the colour is blue 

 

91 

00:05:39,402 --> 00:05:44,422 

so I changed it to red to make the data more visible. 



 

92 

00:05:45,020 --> 00:05:49,515 

On this line, I'm adding basemap from contextily 

 

93 

00:05:49,615 --> 00:05:52,159 

and I'm saying that I'm adding it on the same plot. 

 

94 

00:05:52,259 --> 00:05:53,956 

I'm specifying CRS. 

 

95 

00:05:54,078 --> 00:05:56,126 

So, I'm going to talk about CRS, 

 

96 

00:05:56,226 --> 00:05:58,393 

which stands for Coordinate Reference System 

 

97 

00:05:58,493 --> 00:06:00,091 

in more detail later. 

 

98 

00:06:00,514 --> 00:06:02,083 

And I'm specifying the source. 

 

99 

00:06:02,263 --> 00:06:07,471 



Source is the type of background mapping I would like to see. 

 

100 

00:06:07,940 --> 00:06:10,958 

Again, I'll talk more about it later 

 

101 

00:06:11,058 --> 00:06:14,366 

and provide a few examples of what it could be. 

 

102 

00:06:14,576 --> 00:06:20,924 

There, alpha is set to 0.4 and alpha is transparency. 

 

103 

00:06:22,234 --> 00:06:25,374 

Again, on these lines I've made plot slightly bigger 

 

104 

00:06:25,738 --> 00:06:29,440 

than it is by default so you can see the data better. 

 

105 

00:06:30,011 --> 00:06:34,395 

So, if you're familiar with UK geography, 

 

106 

00:06:34,495 --> 00:06:38,347 

you know that this area in red is Scotland. 

 

107 



00:06:38,447 --> 00:06:45,230 

And several job ads, well, they have these kind of outliers, 

 

108 

00:06:45,330 --> 00:06:46,362 

let's call them outliers, 

 

109 

00:06:46,714 --> 00:06:49,286 

they do have Scotland as value and location 

 

110 

00:06:49,386 --> 00:06:52,577 

but their coordinates are set to somewhere else 

 

111 

00:06:52,677 --> 00:06:53,939 

so we'll remove them later. 

 

112 

00:06:54,577 --> 00:06:56,719 

And if you see here, 

 

113 

00:06:56,800 --> 00:07:02,422 

our jointplot shows the maximum distribution of that. 

 

114 

00:07:02,781 --> 00:07:08,192 

And if you create intersection, you would see that it's Edinburgh 

 



115 

00:07:08,673 --> 00:07:10,294 

and Glasgow, 

 

116 

00:07:10,404 --> 00:07:14,515 

and most popular Third location is here in Aberdeenshire. 

 

117 

00:07:15,506 --> 00:07:17,534 

Right. But it's important to say that, 

 

118 

00:07:17,634 --> 00:07:21,180 

at this stage, this data is not spatial data yet. 

 

119 

00:07:22,331 --> 00:07:23,858 

To make it spatial, 

 

120 

00:07:23,958 --> 00:07:26,744 

we are going to convert the data frame into GeoDataFrame 

 

121 

00:07:26,844 --> 00:07:29,543 

so we are able to perform geospatial analysis. 

 

122 

00:07:30,880 --> 00:07:32,575 

We are going to import GeoPandas 



 

123 

00:07:32,675 --> 00:07:35,273 

and the convention is to shorten the library names 

 

124 

00:07:35,373 --> 00:07:38,473 

that we are going to import Pandas as GPD. 

 

125 

00:07:39,099 --> 00:07:46,043 

Again, GeoPandas is a project which allows us to work with geospatial data 

 

126 

00:07:46,322 --> 00:07:47,813 

and Python environment. 

 

127 

00:07:48,233 --> 00:07:53,106 

On the background, it uses Shapely library. 

 

128 

00:07:53,206 --> 00:07:54,487 

I've added documentation here. 

 

129 

00:07:54,587 --> 00:07:57,900 

So, if you click the link, you can read about it later. 

 

130 

00:07:58,599 --> 00:08:02,756 



And it uses matplotlib for plotting. 

 

131 

00:08:06,269 --> 00:08:07,683 

So, let's import matplotlib 

 

132 

00:08:07,783 --> 00:08:10,645 

as we are going to use it for plotting GeoPandas. 

 

133 

00:08:10,745 --> 00:08:15,315 

And in this session, we are going to use Point and Polygon 

 

134 

00:08:15,415 --> 00:08:17,405 

so I'm importing them as well. 

 

135 

00:08:20,325 --> 00:08:25,372 

So, now we need to create our GeoDataFrame 

 

136 

00:08:25,472 --> 00:08:29,175 

based on available X and Y. 

 

137 

00:08:29,275 --> 00:08:30,517 

And the convention, really, 

 

138 



00:08:30,722 --> 00:08:35,389 

the command is GeoPandas creates points from XY, 

 

139 

00:08:35,489 --> 00:08:40,979 

which kind of says everything for itself. 

 

140 

00:08:41,600 --> 00:08:42,882 

So, let's do this. 

 

141 

00:08:44,722 --> 00:08:47,314 

So, on this step, I'm creating a GeoDataFrame 

 

142 

00:08:47,480 --> 00:08:49,178 

and I'm calling it GDF. 

 

143 

00:08:49,278 --> 00:08:52,376 

I'm saying GeoPandas data frame for command 

 

144 

00:08:52,974 --> 00:08:54,932 

using my DF, data frame, 

 

145 

00:08:55,947 --> 00:08:59,734 

the job ads data loaded on a previous step. 

 



146 

00:08:59,986 --> 00:09:01,704 

And for geometry column, 

 

147 

00:09:01,912 --> 00:09:06,681 

we are going to use a longitude column and a latitude column 

 

148 

00:09:06,781 --> 00:09:08,810 

and create points based on them. 

 

149 

00:09:11,109 --> 00:09:13,661 

So, let's see our data. 

 

150 

00:09:14,469 --> 00:09:17,378 

So, we have exactly the same data as before. 

 

151 

00:09:18,307 --> 00:09:20,476 

If you noticed on the previous steps, 

 

152 

00:09:20,576 --> 00:09:22,916 

when we looked at the data we had only 23 columns 

 

153 

00:09:23,016 --> 00:09:27,264 

and now we have one extra column called geometry 



 

154 

00:09:27,433 --> 00:09:29,231 

which is a Point 

 

155 

00:09:29,761 --> 00:09:33,349 

and it has information similar to what we have here. 

 

156 

00:09:34,564 --> 00:09:37,114 

So, now we have a spatial dataset. 

 

157 

00:09:39,075 --> 00:09:40,754 

Let's check our Coordinate Reference system. 

 

158 

00:09:42,472 --> 00:09:45,860 

We could have specified it on a previous step. 

 

159 

00:09:46,336 --> 00:09:49,053 

If it's not specified, by default it's set to none. 

 

160 

00:09:51,432 --> 00:09:54,601 

And in this section, I'm going to talk very, very briefly about 

 

161 

00:09:54,701 --> 00:09:56,847 



map projections and Coordinate Reference System 

 

162 

00:09:56,947 --> 00:10:01,266 

for those who are not familiar with this kind of concept, 

 

163 

00:10:01,484 --> 00:10:04,521 

which is very, very crucial in the GIS world. 

 

164 

00:10:04,701 --> 00:10:08,649 

Map projection, in very simple terms, 

 

165 

00:10:08,749 --> 00:10:11,745 

tries to transform the Earth from its spherical shape 

 

166 

00:10:12,053 --> 00:10:16,091 

to a flat, planar shape or flat map. 

 

167 

00:10:16,281 --> 00:10:18,371 

And Coordinate Reference System, 

 

168 

00:10:18,471 --> 00:10:22,538 

CRS for short, defines how this two-dimensional space 

 

169 



00:10:22,638 --> 00:10:25,076 

projected on a map in your geographical system 

 

170 

00:10:25,176 --> 00:10:27,655 

relates to real places on Earth. 

 

171 

00:10:28,215 --> 00:10:34,041 

So, the decision of which map projection and Coordinate Reference System to use 

 

172 

00:10:34,141 --> 00:10:37,511 

depends on the region and country. 

 

173 

00:10:40,688 --> 00:10:43,866 

I've included a source link where you can read more. 

 

174 

00:10:43,976 --> 00:10:49,389 

But please bear in mind it's very, very important for GIS. 

 

175 

00:10:50,630 --> 00:10:53,158 

So, I have included a few visual examples 

 

176 

00:10:53,258 --> 00:10:55,706 

just to showcase it. 

 



177 

00:10:56,105 --> 00:10:58,182 

Depending on the choice, you could have 

 

178 

00:10:58,559 --> 00:11:01,537 

different distortions. 

 

179 

00:11:01,637 --> 00:11:04,275 

In this case, it's distortion by area. 

 

180 

00:11:05,706 --> 00:11:11,694 

And this is another example just to illustrate how the shape changes. 

 

181 

00:11:11,794 --> 00:11:14,122 

But it could also change distances and angles 

 

182 

00:11:14,222 --> 00:11:15,350 

depending on the projection. 

 

183 

00:11:15,450 --> 00:11:21,659 

But what you see on the screen would change based on what you specified. 

 

184 

00:11:22,040 --> 00:11:25,956 

Again, there is a source to check 



 

185 

00:11:26,056 --> 00:11:30,885 

and maybe learn a bit more about it on your own. 

 

186 

00:11:31,114 --> 00:11:36,683 

So, now we are going to set coordinates to WGS84 

 

187 

00:11:36,996 --> 00:11:39,130 

using the set_crs function, 

 

188 

00:11:40,080 --> 00:11:42,637 

which takes EPSG codes, 

 

189 

00:11:42,737 --> 00:11:46,196 

which stands for European Petroleum Survey Group, 

 

190 

00:11:47,111 --> 00:11:49,629 

and value of the system. 

 

191 

00:11:50,129 --> 00:11:55,577 

So, for WGS84, the value of EPSG is 4326. 

 

192 

00:11:57,407 --> 00:12:01,457 



And I'm printing it as well just to check that it worked. 

 

193 

00:12:02,677 --> 00:12:07,066 

I've also included for you several quite useful links, I think. 

 

194 

00:12:08,175 --> 00:12:10,903 

So, one is Spatial Reference where you can find 

 

195 

00:12:12,063 --> 00:12:15,332 

many, many, many codes and references, 

 

196 

00:12:15,432 --> 00:12:17,715 

coordinate references. So, we'll just open one. 

 

197 

00:12:18,385 --> 00:12:23,697 

So, it does contain Bounds or a link 

 

198 

00:12:25,047 --> 00:12:26,220 

and a Google. 

 

199 

00:12:26,334 --> 00:12:29,088 

And the other one is also quite useful. 

 

200 



00:12:30,241 --> 00:12:31,622 

Let's just open it. 

 

201 

00:12:31,892 --> 00:12:34,574 

It does also have visual representations of 

 

202 

00:12:34,654 --> 00:12:38,587 

what you would expect your data to be like 

 

203 

00:12:38,687 --> 00:12:39,849 

after you project it. 

 

204 

00:12:40,079 --> 00:12:43,451 

And also, it does contain transformational values. 

 

205 

00:12:44,990 --> 00:12:46,082 

Let's move on. 

 

206 

00:12:46,853 --> 00:12:50,195 

So, now we've set up our coordinate reference system 

 

207 

00:12:50,295 --> 00:12:52,104 

and we have our geospatial data, 

 



208 

00:12:52,204 --> 00:12:54,895 

let's do some visualisation. 

 

209 

00:12:54,995 --> 00:12:57,374 

So, we are going to use matplotlib 

 

210 

00:12:57,474 --> 00:12:59,963 

and the function dot plot. 

 

211 

00:13:00,703 --> 00:13:01,732 

And by default, 

 

212 

00:13:03,471 --> 00:13:07,010 

the map in GeoPandas is created based on the geometry column. 

 

213 

00:13:07,479 --> 00:13:08,587 

Let's run it. 

 

214 

00:13:10,978 --> 00:13:12,197 

So, it might take a while. 

 

215 

00:13:12,297 --> 00:13:15,757 

What I'm saying is I want to plot my GeoDataFrame, 



 

216 

00:13:16,566 --> 00:13:19,556 

I want my dots to be red, 

 

217 

00:13:19,656 --> 00:13:20,835 

and I want it to show. 

 

218 

00:13:20,935 --> 00:13:23,123 

So, if you see here, it's a small plot 

 

219 

00:13:23,223 --> 00:13:25,701 

but you can see the outline of Scotland here. 

 

220 

00:13:25,999 --> 00:13:27,207 

Similar to what we've seen 

 

221 

00:13:29,128 --> 00:13:34,627 

when we were visualising data using just X and Y and Seaborn. 

 

222 

00:13:36,152 --> 00:13:40,970 

On this step, I would like to show how to open different file formats of 

 

223 

00:13:41,070 --> 00:13:42,725 



spatial data in Pandas. 

 

224 

00:13:43,154 --> 00:13:47,323 

So, in this step, we are going to load the boundary of Scotland 

 

225 

00:13:48,879 --> 00:13:53,933 

using our open and free Ordinance Survey data BoundaryLine, 

 

226 

00:13:54,839 --> 00:13:57,787 

which is available for download for everybody. 

 

227 

00:13:57,887 --> 00:13:59,195 

So, it's free to download here. 

 

228 

00:13:59,525 --> 00:14:04,141 

And it is a collection of data available. 

 

229 

00:14:04,711 --> 00:14:07,409 

Trying to find the description. 

 

230 

00:14:07,509 --> 00:14:09,318 

So, it does contain information about 

 

231 



00:14:09,418 --> 00:14:12,135 

boundaries of civil parishes, wards, communities, 

 

232 

00:14:12,712 --> 00:14:14,159 

electoral divisions. 

 

233 

00:14:14,779 --> 00:14:16,456 

So, it does contain a lot of information 

 

234 

00:14:16,556 --> 00:14:19,305 

and it's available for download. 

 

235 

00:14:21,345 --> 00:14:24,533 

So, to read the file, 

 

236 

00:14:25,377 --> 00:14:27,726 

you just need to specify GeoPandas, read file, 

 

237 

00:14:28,285 --> 00:14:31,570 

and what it does, the library reads the data 

 

238 

00:14:31,670 --> 00:14:33,867 

and it returns it as a GeoDataFrame object. 

 



239 

00:14:35,248 --> 00:14:36,407 

Run it here. 

 

240 

00:14:36,596 --> 00:14:39,995 

So, in mine, I used GeoDataFrame OS data 

 

241 

00:14:40,095 --> 00:14:41,323 

and I'm saying read file, 

 

242 

00:14:42,174 --> 00:14:44,212 

which is saved in the data folder. 

 

243 

00:14:44,440 --> 00:14:46,701 

So, it's district_borough_unitary shape. 

 

244 

00:14:47,433 --> 00:14:52,442 

So, the full dataset provided is GeoPackage with many layers 

 

245 

00:14:52,542 --> 00:14:55,181 

so that it's packaged to reduce the size 

 

246 

00:14:55,281 --> 00:14:58,980 

and make it easier for you to work with the data. 



 

247 

00:14:59,090 --> 00:15:01,530 

I preloaded it into a shapefile. 

 

248 

00:15:02,409 --> 00:15:04,458 

If you decide to load the full dataset, 

 

249 

00:15:04,558 --> 00:15:07,057 

please command on this line and use this. 

 

250 

00:15:07,314 --> 00:15:09,942 

So, very similar, we are reading the file 

 

251 

00:15:10,723 --> 00:15:12,231 

and for that, set it to GeoPackage 

 

252 

00:15:12,431 --> 00:15:15,960 

and its name and specify the way we need it to be loaded 

 

253 

00:15:16,060 --> 00:15:17,988 

so it would provide the same result. 

 

254 

00:15:19,969 --> 00:15:22,596 



Let's check the Coordinate Reference System. 

 

255 

00:15:23,145 --> 00:15:27,154 

So, this data is projected dataset to the British National Grid, 

 

256 

00:15:27,254 --> 00:15:30,302 

EPSG code 27770. 

 

257 

00:15:32,314 --> 00:15:35,712 

Right. Let's visualise our datasets together. 

 

258 

00:15:35,812 --> 00:15:40,220 

So, I'm going to load my OS data 

 

259 

00:15:40,320 --> 00:15:43,387 

and my Adzuna and job listings together. 

 

260 

00:15:44,529 --> 00:15:47,133 

It might take some time. 

 

261 

00:15:48,814 --> 00:15:51,789 

Again, I specified my Adzuna data to be red. 

 

262 



00:15:51,889 --> 00:15:54,458 

And if you see it, it doesn't look right. 

 

263 

00:15:54,558 --> 00:16:01,297 

So, we have our UK and our Adzuna data here, 

 

264 

00:16:02,154 --> 00:16:04,122 

over here, but we would expect it there. 

 

265 

00:16:07,128 --> 00:16:11,468 

This is one of the typical and common problems which could 

 

266 

00:16:11,595 --> 00:16:14,123 

occur when you use GeoPandas. 

 

267 

00:16:14,223 --> 00:16:16,637 

It is mismatch of projection. 

 

268 

00:16:17,078 --> 00:16:20,406 

Do you remember our GeoDataFrame was WGS84? 

 

269 

00:16:21,035 --> 00:16:25,594 

And OS data is British National Grid. 

 



270 

00:16:25,694 --> 00:16:28,633 

So, if you visualise your data and it's something like this, 

 

271 

00:16:28,982 --> 00:16:30,909 

the first thing would be to check the projection. 

 

272 

00:16:31,009 --> 00:16:34,617 

So, on this step, let's make the plot bigger 

 

273 

00:16:34,717 --> 00:16:39,487 

and fix the projection issue using to_crs Scotland. 

 

274 

00:16:40,576 --> 00:16:43,454 

So, I'm going to run it. 

 

275 

00:16:44,205 --> 00:16:49,494 

So, on this line, I'm setting my plot to a bigger size 

 

276 

00:16:49,594 --> 00:16:54,963 

and I'm going to reproject my both datasets to Web Mercator 

 

277 

00:16:55,095 --> 00:16:58,961 

to align it with the background map. So, on this line, I'm reprojecting 



 

278 

00:16:59,061 --> 00:17:01,660 

my OS data using command to_crs, 

 

279 

00:17:01,760 --> 00:17:04,259 

specifying a new Coordinate Reference System. 

 

280 

00:17:05,389 --> 00:17:10,498 

Similarly, on this line, I'm doing the same with my Adzuna data 

 

281 

00:17:10,598 --> 00:17:13,276 

from the GeoDataFrame and I'm setting the colour as red 

 

282 

00:17:13,376 --> 00:17:14,504 

so we can clearly see it. 

 

283 

00:17:14,704 --> 00:17:17,012 

And on this line, I'm adding basemap. 

 

284 

00:17:18,772 --> 00:17:22,802 

So, now our visualisation is better. 

 

285 

00:17:22,902 --> 00:17:24,301 



So, data aligned. 

 

286 

00:17:26,511 --> 00:17:31,730 

And what I want to talk about next is 

 

287 

00:17:31,830 --> 00:17:33,488 

contextily basemaps. 

 

288 

00:17:34,305 --> 00:17:40,767 

So, there are different ways you can use reprojection 

 

289 

00:17:40,867 --> 00:17:42,455 

and align with this basemap. 

 

290 

00:17:42,555 --> 00:17:44,283 

So, just a reminder that, 

 

291 

00:17:44,590 --> 00:17:47,894 

on this step, we projected both layers 

 

292 

00:17:48,382 --> 00:17:51,341 

and didn't do any reprojection of the basemap file. 

 

293 



00:17:51,441 --> 00:17:53,379 

It could have been done in different ways. 

 

294 

00:17:53,499 --> 00:17:55,967 

So, we could have reprojected only one layer 

 

295 

00:17:56,067 --> 00:17:58,882 

to match the Coordinate Reference System 

 

296 

00:17:58,982 --> 00:18:00,120 

of another one 

 

297 

00:18:00,890 --> 00:18:05,478 

and then specify the same EPSG code in our basemap. 

 

298 

00:18:05,888 --> 00:18:08,936 

And it's the output we would expect. 

 

299 

00:18:09,036 --> 00:18:12,543 

So, the data is, it's the same location 

 

300 

00:18:12,643 --> 00:18:15,778 

but it is visualised in a slightly different way. 

 



301 

00:18:16,289 --> 00:18:20,007 

What I mean by this is, try to compare this picture 

 

302 

00:18:20,107 --> 00:18:21,795 

and this. 

 

303 

00:18:22,093 --> 00:18:24,959 

So, the data is the same, just a different Coordinate Reference System 

 

304 

00:18:25,059 --> 00:18:28,905 

and a slightly different visualisation. 

 

305 

00:18:29,023 --> 00:18:33,810 

So, now I'd like to show you available backgrounds. 

 

306 

00:18:33,910 --> 00:18:38,719 

So, if you specify contextily providing this, 

 

307 

00:18:38,819 --> 00:18:43,663 

you would get a list of all available background map providers. 

 

308 

00:18:45,350 --> 00:18:51,279 

And then, if you add contextily providers 



 

309 

00:18:51,379 --> 00:18:54,348 

and instead of keyname add something like "HERE" 

 

310 

00:18:54,448 --> 00:18:56,456 

and said dot keys, 

 

311 

00:18:56,925 --> 00:18:59,692 

you would get a list of 

 

312 

00:19:00,159 --> 00:19:01,889 

these background maps and visualisations of 

 

313 

00:19:01,989 --> 00:19:04,437 

different styles available from these providers. 

 

314 

00:19:04,537 --> 00:19:06,987 

So, in this example for provider HERE, 

 

315 

00:19:07,087 --> 00:19:11,902 

we have this many different styles 

 

316 

00:19:12,630 --> 00:19:14,127 



available for you to use. 

 

317 

00:19:14,687 --> 00:19:16,707 

Right. Spatial Join. 

 

318 

00:19:16,997 --> 00:19:22,076 

This is quite a popular operation in GIS. 

 

319 

00:19:22,366 --> 00:19:26,724 

I've added a link for how it works in GeoPandas. 

 

320 

00:19:26,954 --> 00:19:28,723 

So, here it is, spatial join. 

 

321 

00:19:29,084 --> 00:19:30,904 

It's different arguments. 

 

322 

00:19:31,744 --> 00:19:35,523 

Again, it's something for you to have. 

 

323 

00:19:38,839 --> 00:19:42,378 

As always, let's look at the data. 

 

324 



00:19:42,478 --> 00:19:45,604 

And on this step, we are going to remove outliers 

 

325 

00:19:45,873 --> 00:19:49,292 

but outside of Scotland 

 

326 

00:19:49,392 --> 00:19:52,236 

and limit it to make it smaller and faster. 

 

327 

00:19:52,336 --> 00:19:55,275 

We're going to remove everything outside of Glasgow. 

 

328 

00:19:55,855 --> 00:19:57,988 

So, just a quick recap. 

 

329 

00:19:58,000 --> 00:20:00,749 

So, our GeoDataFrame with Adzuna listings 

 

330 

00:20:02,007 --> 00:20:04,386 

contains 24 columns now. 

 

331 

00:20:04,586 --> 00:20:07,875 

23 of which are the Adzuna data itself 

 



332 

00:20:08,083 --> 00:20:11,523 

and one is the geometry that we created. 

 

333 

00:20:14,140 --> 00:20:18,860 

I'm going to subselect my Ordinance Survey data 

 

334 

00:20:19,319 --> 00:20:21,796 

only to have Glasgow. 

 

335 

00:20:22,656 --> 00:20:24,044 

Sorry, Glasgow. 

 

336 

00:20:24,244 --> 00:20:26,392 

That's set and I'm going to go with Glasgow. 

 

337 

00:20:28,481 --> 00:20:30,169 

Will it just quickly work? 

 

338 

00:20:30,998 --> 00:20:33,157 

What it looks like. Again, if you're familiar, 

 

339 

00:20:33,257 --> 00:20:35,924 

this is a Glasgow boundary. 



 

340 

00:20:36,355 --> 00:20:37,822 

Just a visual check. 

 

341 

00:20:38,802 --> 00:20:41,982 

Let's check what Coordinate Reference System it is in. 

 

342 

00:20:42,201 --> 00:20:45,459 

So, it is in Web Mercator. 

 

343 

00:20:45,827 --> 00:20:47,636 

If you remember, on the previous step, 

 

344 

00:20:47,823 --> 00:20:50,218 

we reprojected OS data 

 

345 

00:20:51,189 --> 00:20:56,725 

and Glasgow GeoDataFrame inherited it. 

 

346 

00:20:57,885 --> 00:21:00,154 

Right. Let's make spatial join. 

 

347 

00:21:01,004 --> 00:21:06,001 



So, to make a join, we need to specify our GeoDataFrame 

 

348 

00:21:06,341 --> 00:21:07,449 

we'd like to join. 

 

349 

00:21:07,549 --> 00:21:09,788 

And in this example, we are going to select 

 

350 

00:21:09,888 --> 00:21:11,497 

everything which falls within. 

 

351 

00:21:11,797 --> 00:21:14,627 

And, if you can see, we've got an error. 

 

352 

00:21:15,705 --> 00:21:17,885 

What do you think caused an error? 

 

353 

00:21:21,354 --> 00:21:22,412 

Sorry. 

 

354 

00:21:22,583 --> 00:21:24,641 

So, if you read here the user warning, 

 

355 



00:21:24,829 --> 00:21:28,628 

it says it's a mismatch between left and right geometry. 

 

356 

00:21:29,728 --> 00:21:36,575 

And it says that our left GeoDataFrame is in WGS84, 4326, 

 

357 

00:21:36,675 --> 00:21:39,100 

and our Glasgow data frame has 

 

358 

00:21:39,200 --> 00:21:41,858 

the EPSG code 3857, which is Web Mercator. 

 

359 

00:21:41,958 --> 00:21:46,696 

So, because there are different projections, 

 

360 

00:21:46,796 --> 00:21:49,414 

GeoPandas cannot figure it out and throw an exception. 

 

361 

00:21:49,514 --> 00:21:52,952 

So, what we need to do is to reproject one of the layers 

 

362 

00:21:53,052 --> 00:21:54,911 

to match the projection of another. 

 



363 

00:21:56,099 --> 00:21:57,299 

Let's run it. 

 

364 

00:22:00,621 --> 00:22:03,611 

It might take some time if you run it on your computer. 

 

365 

00:22:05,111 --> 00:22:08,407 

So, again, to remind you, 

 

366 

00:22:08,507 --> 00:22:12,747 

we are going to select all the job ads within Glasgow. 

 

367 

00:22:12,985 --> 00:22:14,670 

Let's have a look at what we've got. 

 

368 

00:22:15,249 --> 00:22:17,138 

We're going to spatially join 

 

369 

00:22:19,537 --> 00:22:22,667 

our Adzuna dataset and Glasgow boundary. 

 

370 

00:22:23,948 --> 00:22:25,015 

Right. 



 

371 

00:22:26,085 --> 00:22:29,273 

I'm going to check the length of my join. 

 

372 

00:22:29,443 --> 00:22:32,021 

So, now it's quite a small and manageable dataset. 

 

373 

00:22:33,815 --> 00:22:35,695 

So, I'm going to remember this number 

 

374 

00:22:35,795 --> 00:22:38,005 

because I'm going to use it for something else as well. 

 

375 

00:22:38,535 --> 00:22:42,203 

Right. Let's check what we have inside. 

 

376 

00:22:42,432 --> 00:22:46,913 

And the first thing you would notice is now we have 41 columns. 

 

377 

00:22:47,280 --> 00:22:49,059 

So, what happened here, 

 

378 

00:22:49,889 --> 00:22:54,826 



our Adzuna dataset has been spatially joined with Glasgow 

 

379 

00:22:54,926 --> 00:22:58,132 

and all the records are saved information 

 

380 

00:22:58,506 --> 00:23:01,455 

from the data layer related to this location. 

 

381 

00:23:01,743 --> 00:23:05,133 

In this case, it's only information about 

 

382 

00:23:05,792 --> 00:23:06,871 

our Glasgow... 

 

383 

00:23:08,319 --> 00:23:10,688 

Sorry. The same information for all the points 

 

384 

00:23:10,788 --> 00:23:13,427 

but it could be used in a more powerful way, 

 

385 

00:23:13,527 --> 00:23:14,914 

which I'll show you later. 

 

386 



00:23:17,204 --> 00:23:23,604 

But an important thing to note and to take from it is 

 

387 

00:23:23,704 --> 00:23:28,681 

that by spatially joining two of our GeoDataFrames, 

 

388 

00:23:28,781 --> 00:23:31,726 

we receive information from both of them. 

 

389 

00:23:33,984 --> 00:23:36,303 

In this step, I really wanted to show that 

 

390 

00:23:36,862 --> 00:23:41,162 

you can use your GeoDataFrame in a similar way as your data frame 

 

391 

00:23:41,262 --> 00:23:43,807 

and you can use typical functions. 

 

392 

00:23:43,907 --> 00:23:45,013 

So, here, for instance, 

 

393 

00:23:45,213 --> 00:23:49,037 

I used a group by column to find 

 



394 

00:23:49,325 --> 00:23:55,250 

the most paid categories 

 

395 

00:23:56,037 --> 00:24:00,458 

by finding the average minimum salary 

 

396 

00:24:00,736 --> 00:24:03,904 

and then sorting values by the salary. 

 

397 

00:24:04,254 --> 00:24:06,812 

So, in this step, 

 

398 

00:24:06,910 --> 00:24:11,538 

we just did a summary of our GeoSpatial data frame of 

 

399 

00:24:11,638 --> 00:24:12,795 

geographical data 

 

400 

00:24:15,229 --> 00:24:16,810 

and received some statistics. 

 

401 

00:24:17,519 --> 00:24:20,077 

Right. Let's quickly visualise data. 



 

402 

00:24:20,177 --> 00:24:24,236 

And I would like to introduce you to, in this step, to geoplot, 

 

403 

00:24:26,105 --> 00:24:30,161 

which is a fantastic library for geospatial data visualisation. 

 

404 

00:24:30,650 --> 00:24:35,724 

I will quickly show you the gallery, just to introduce 

 

405 

00:24:36,221 --> 00:24:41,880 

the different visualisation styles and techniques available from here. 

 

406 

00:24:42,859 --> 00:24:46,968 

Again, please have a look when you have some time. 

 

407 

00:24:47,630 --> 00:24:50,846 

And, as always, we need to import this library. 

 

408 

00:24:54,355 --> 00:24:56,695 

And here I'm going to use pointplot, 

 

409 

00:24:58,854 --> 00:25:03,812 



where my colour would depend on the value in the salary min column. 

 

410 

00:25:05,362 --> 00:25:10,101 

So, the data parameter is just legend true to have the legend here. 

 

411 

00:25:10,220 --> 00:25:13,067 

Edge colour is set to light grey but you can actually see it 

 

412 

00:25:13,167 --> 00:25:15,111 

so it's edge of the point. 

 

413 

00:25:15,575 --> 00:25:17,420 

And its line width. 

 

414 

00:25:17,770 --> 00:25:20,450 

So, we do have visualisation 

 

415 

00:25:20,550 --> 00:25:26,758 

but clearly most of the values fell in this region 

 

416 

00:25:26,858 --> 00:25:29,386 

and we can't actually see a difference between 

 

417 



00:25:30,429 --> 00:25:32,497 

different areas of Glasgow in terms of salary min. 

 

418 

00:25:34,216 --> 00:25:36,024 

To fix this or to enhance it, 

 

419 

00:25:36,272 --> 00:25:38,873 

I'm going to use mapclassify. 

 

420 

00:25:41,440 --> 00:25:44,909 

Mapclassify is a library which provides classification schemes 

 

421 

00:25:45,158 --> 00:25:47,017 

there are different parameters. 

 

422 

00:25:48,916 --> 00:25:50,044 

You will see. 

 

423 

00:25:50,474 --> 00:25:52,732 

So, I'm going to import this mapclassify. 

 

424 

00:25:52,832 --> 00:25:54,480 

The library is mc. 

 



425 

00:25:54,562 --> 00:25:58,182 

And I'm going to use scheme Quantiles 

 

426 

00:25:58,550 --> 00:26:02,679 

and my salary min column from join. 

 

427 

00:26:02,769 --> 00:26:05,617 

Now, as I've said before, 

 

428 

00:26:06,506 --> 00:26:08,314 

this part is the same. 

 

429 

00:26:08,414 --> 00:26:10,683 

The only change I made in here is 

 

430 

00:26:10,783 --> 00:26:12,402 

to specify the scheme I'd like to use. 

 

431 

00:26:16,655 --> 00:26:18,285 

So, the legend changed. 

 

432 

00:26:18,464 --> 00:26:22,201 

But now you can see that the data has been reclassified 



 

433 

00:26:22,301 --> 00:26:28,383 

and now we can see the distribution based on the salary min column. 

 

434 

00:26:28,781 --> 00:26:33,653 

Again, there are many schemes and classification types available. 

 

435 

00:26:33,753 --> 00:26:37,971 

It's a very, very powerful to create nice looking visualisations. 

 

436 

00:26:39,626 --> 00:26:40,714 

Right. 

 

437 

00:26:40,941 --> 00:26:46,169 

The other geospatial function I'd like to introduce is clip. 

 

438 

00:26:50,530 --> 00:26:55,237 

GeoPandas does clip to what you would expect to get 

 

439 

00:26:55,337 --> 00:26:57,456 

in traditional GIS. 

 

440 

00:26:57,556 --> 00:27:00,554 



So, one layer is clipped by another 

 

441 

00:27:01,143 --> 00:27:03,383 

based on the geometries. 

 

442 

00:27:03,562 --> 00:27:05,931 

Again, very important, both layers must be 

 

443 

00:27:06,031 --> 00:27:08,099 

the same Coordinate Reference System. 

 

444 

00:27:11,890 --> 00:27:15,590 

So, for that reason, let's check what we have now. 

 

445 

00:27:15,690 --> 00:27:19,888 

So, one of our layers is in Web Mercator 

 

446 

00:27:19,988 --> 00:27:23,056 

and the other one is in WGS84. 

 

447 

00:27:25,317 --> 00:27:30,025 

So, let's reproject both layers to Web Mercator. 

 

448 



00:27:32,031 --> 00:27:34,801 

Actually, now I'm thinking we do not need to reproject one of them. 

 

449 

00:27:35,270 --> 00:27:37,089 

We need to reproject only one of them. 

 

450 

00:27:39,299 --> 00:27:41,225 

And let's do the clip. 

 

451 

00:27:41,402 --> 00:27:44,641 

So, we are going to clip 

 

452 

00:27:44,741 --> 00:27:47,680 

our Adzuna job listings stored in GDF 

 

453 

00:27:47,780 --> 00:27:49,389 

by the Glasgow boundary. 

 

454 

00:27:49,786 --> 00:27:52,406 

And, again, remove everything else outside. 

 

455 

00:27:52,694 --> 00:27:56,726 

So, let's check the length of our dataset. 

 



456 

00:27:56,826 --> 00:28:00,208 

So, if you remember, it is exactly the same number 

 

457 

00:28:00,308 --> 00:28:04,355 

as we had when we were joining the data. 

 

458 

00:28:04,576 --> 00:28:06,173 

The length looked quite similar. 

 

459 

00:28:06,373 --> 00:28:09,102 

Let's look at the clipped GeoDataFrame. 

 

460 

00:28:11,159 --> 00:28:14,187 

And, again, there are only 24 columns. 

 

461 

00:28:14,287 --> 00:28:16,220 

So, the way clip works is 

 

462 

00:28:16,320 --> 00:28:22,339 

it subselects all the features 

 

463 

00:28:22,439 --> 00:28:23,986 

within other features. 



 

464 

00:28:24,118 --> 00:28:29,225 

So, what we have got here, we've got our Adzuna job ads 

 

465 

00:28:29,651 --> 00:28:32,070 

subselected or clipped only 

 

466 

00:28:33,163 --> 00:28:34,643 

to be within Glasgow. 

 

467 

00:28:35,542 --> 00:28:38,990 

So, no extra additional information is added 

 

468 

00:28:39,567 --> 00:28:40,917 

when using clip. 

 

469 

00:28:41,858 --> 00:28:43,376 

Now, let's plot the data. 

 

470 

00:28:45,983 --> 00:28:49,813 

Again, I'm specifying my figure size on this line. 

 

471 

00:28:50,427 --> 00:28:52,925 



I'm plotting my clipped GeoDataFrame, 

 

472 

00:28:53,025 --> 00:28:54,163 

my Glasgow GeoDataframe, 

 

473 

00:28:54,263 --> 00:28:58,940 

set in some transparency so we can see both datasets. 

 

474 

00:28:59,040 --> 00:29:01,588 

And I'm adding my basemap. 

 

475 

00:29:01,993 --> 00:29:04,511 

Now, I'm using OpenStreetMap Mapnik. 

 

476 

00:29:04,864 --> 00:29:06,306 

This is what we've got. 

 

477 

00:29:07,879 --> 00:29:12,281 

If you can see, no point is outside of the Glasgow boundary. 

 

478 

00:29:15,518 --> 00:29:19,184 

So, on this step, I just really wanted to show you that 

 

479 



00:29:19,994 --> 00:29:23,093 

using join and clip in this way 

 

480 

00:29:23,717 --> 00:29:25,006 

provided us with the same result 

 

481 

00:29:25,106 --> 00:29:29,844 

and show the way it works if you run assert statement 

 

482 

00:29:29,944 --> 00:29:32,432 

and it doesn't return anything or returns true. 

 

483 

00:29:33,821 --> 00:29:35,689 

So, if it doesn't return any output, 

 

484 

00:29:35,789 --> 00:29:37,947 

it means the statement is true. 

 

485 

00:29:38,047 --> 00:29:40,754 

And if it throws an error, it means it's false. 

 

486 

00:29:41,086 --> 00:29:42,545 

So, in our case, 

 



487 

00:29:43,235 --> 00:29:46,722 

both geospatial functions provided the same result. 

 

488 

00:29:49,622 --> 00:29:51,139 

I don't have to explain this slide. 

 

489 

00:29:51,239 --> 00:29:53,337 

So, when you work with geoplot, 

 

490 

00:29:53,437 --> 00:29:56,775 

what you could often come across is 

 

491 

00:29:57,481 --> 00:30:03,529 

some clearly wrong result but you do not get any errors. 

 

492 

00:30:04,209 --> 00:30:06,997 

And it's a little helpful hint. 

 

493 

00:30:07,097 --> 00:30:08,601 

So, in geoplot, 

 

494 

00:30:11,144 --> 00:30:15,542 

coordinates need to be within this range. 



 

495 

00:30:15,642 --> 00:30:20,830 

So, they should be between minus 180 and plus 180. 

 

496 

00:30:20,930 --> 00:30:22,548 

I'll showcase what I mean here. 

 

497 

00:30:24,098 --> 00:30:27,464 

So, I'm going to create, clip, and reproject it. 

 

498 

00:30:28,051 --> 00:30:30,472 

I'm going to create a new GeoDataFrame 

 

499 

00:30:31,660 --> 00:30:34,658 

by reprojecting an available clipped data frame. 

 

500 

00:30:36,626 --> 00:30:38,764 

And I want to show you 

 

501 

00:30:39,672 --> 00:30:43,546 

bounding boxes of our newly reprojected data frame 

 

502 

00:30:44,315 --> 00:30:46,783 



and our existing clipped data frame. 

 

503 

00:30:46,883 --> 00:30:48,057 

So, if you can see, 

 

504 

00:30:49,125 --> 00:30:53,212 

this GeoDataFrame and bounding box are 

 

505 

00:30:53,312 --> 00:30:56,779 

within minus 180 and plus 180. 

 

506 

00:30:57,259 --> 00:30:59,156 

And because of the different projections of 

 

507 

00:30:59,256 --> 00:31:00,311 

the clipped data frame, 

 

508 

00:31:00,411 --> 00:31:05,310 

they are out of these limits. 

 

509 

00:31:05,804 --> 00:31:07,977 

Again, a bit of an explanation. 

 

510 



00:31:08,077 --> 00:31:12,605 

So, if you plot our clipped GeoDataFrame, 

 

511 

00:31:14,323 --> 00:31:16,272 

because it does fall within those bounds, 

 

512 

00:31:16,372 --> 00:31:17,741 

you would get some visualisation. 

 

513 

00:31:17,841 --> 00:31:19,949 

So, in this case, 

 

514 

00:31:20,713 --> 00:31:26,550 

this is our clipped GeoDataFrame 

 

515 

00:31:26,650 --> 00:31:30,007 

where the size of the points depends on 

 

516 

00:31:30,107 --> 00:31:33,114 

the information stored in the salary min column. 

 

517 

00:31:33,394 --> 00:31:37,091 

Limits just specify the minimum and maximum size of the points. 

 



518 

00:31:38,005 --> 00:31:40,413 

So, figure size is just the size of the plot. 

 

519 

00:31:40,513 --> 00:31:42,409 

Alpha is the transparency. 

 

520 

00:31:42,946 --> 00:31:44,621 

Legend is set to true again. 

 

521 

00:31:46,851 --> 00:31:50,085 

Probably, it's better to reduce the size from 50 to something else 

 

522 

00:31:50,185 --> 00:31:51,591 

so it does fit better. 

 

523 

00:31:53,472 --> 00:31:58,759 

And, on this line, I'm also adding my Glasgow boundary on this plot. 

 

524 

00:31:59,309 --> 00:32:04,288 

Now, let's take a look if we use the clipped GeoDataFrame 

 

525 

00:32:04,572 --> 00:32:08,743 

which bounding boxes are outside of those values. 



 

526 

00:32:08,843 --> 00:32:12,562 

And see, you only have Glasgow, 

 

527 

00:32:14,690 --> 00:32:18,308 

the Glasgow outline but nothing from the clipped data frame. 

 

528 

00:32:18,408 --> 00:32:21,548 

And it doesn't throw you any errors. 

 

529 

00:32:21,918 --> 00:32:26,068 

So, if anything like this happens when you're using geoplot, 

 

530 

00:32:26,168 --> 00:32:29,256 

just bear in mind that you might need to use different projections 

 

531 

00:32:29,356 --> 00:32:33,955 

so your bounding box is within those limits. 

 

532 

00:32:34,205 --> 00:32:36,703 

Just some hints I wanted to share. 

 

533 

00:32:39,258 --> 00:32:42,975 



In these many examples, 

 

534 

00:32:43,353 --> 00:32:47,291 

we would look into transformation between GeoDataFrame and data frame. 

 

535 

00:32:47,995 --> 00:32:50,951 

As I mentioned before, you can use 

 

536 

00:32:52,125 --> 00:32:56,622 

most Pandas functions in your GeoDataFrame 

 

537 

00:32:57,939 --> 00:33:00,280 

And I'm going to add in another dataset. 

 

538 

00:33:01,018 --> 00:33:03,018 

It is Data Zone boundaries. 

 

539 

00:33:03,854 --> 00:33:05,712 

I've added the link here. 

 

540 

00:33:05,912 --> 00:33:10,027 

So, it's an open dataset containing Data Zones, 

 

541 



00:33:10,216 --> 00:33:11,835 

which, if you're not familiar, 

 

542 

00:33:11,935 --> 00:33:16,042 

it's a kind of statistical area in Scotland. 

 

543 

00:33:16,974 --> 00:33:20,754 

So, the data provided on the website comes in a shapefile 

 

544 

00:33:20,854 --> 00:33:23,533 

but I have converted it to geojson 

 

545 

00:33:24,150 --> 00:33:27,097 

just to show how easy it is to open this file format. 

 

546 

00:33:27,197 --> 00:33:30,266 

And it's quite a typical file format 

 

547 

00:33:31,704 --> 00:33:33,115 

available and used. 

 

548 

00:33:33,845 --> 00:33:38,127 

So, again, the Data Zone boundaries are clipped for Glasgow, 

 



549 

00:33:38,227 --> 00:33:40,438 

just to give you the size, so let's open it. 

 

550 

00:33:41,799 --> 00:33:45,000 

So, similarly, we just say in GeoPandas 

 

551 

00:33:45,100 --> 00:33:47,440 

to read file and specify the file location. 

 

552 

00:33:48,740 --> 00:33:51,472 

Let's check the Coordinate Reference System. 

 

553 

00:33:51,572 --> 00:33:53,214 

So, it's British National Grid, 

 

554 

00:33:53,964 --> 00:33:56,631 

code 27700. 

 

555 

00:34:00,196 --> 00:34:02,846 

Because I'm going to use it with my GeoDataFrame 

 

556 

00:34:02,946 --> 00:34:04,415 

containing Adzuna ads, 



 

557 

00:34:04,580 --> 00:34:07,296 

I want to check what it is now, 

 

558 

00:34:07,396 --> 00:34:09,029 

after the several reprojections we made. 

 

559 

00:34:09,129 --> 00:34:11,407 

So, it is in Web Mercator code 

 

560 

00:34:12,386 --> 00:34:14,172 

3857. 

 

561 

00:34:14,752 --> 00:34:20,450 

So, let's convert our GeoDataFrame to match Data Zones, 

 

562 

00:34:20,869 --> 00:34:23,477 

specifying CRS Scotland 

 

563 

00:34:23,577 --> 00:34:26,175 

and the British National Grid code. 

 

564 

00:34:29,975 --> 00:34:32,273 



Let's look at our Data Zones. 

 

565 

00:34:34,191 --> 00:34:36,835 

So, you can see this is a Glasgow boundary 

 

566 

00:34:36,935 --> 00:34:40,923 

and small, tiny polygons inside which we are going to use. 

 

567 

00:34:43,009 --> 00:34:44,738 

So, what I want to do is 

 

568 

00:34:44,838 --> 00:34:47,615 

to make a spatial join again. 

 

569 

00:34:47,715 --> 00:34:49,189 

But this time I'm going to use 

 

570 

00:34:49,289 --> 00:34:52,919 

my Adzuna data and my Data Zone, 

 

571 

00:34:54,444 --> 00:34:57,863 

assigning values of a Data Zone to 

 

572 



00:34:57,963 --> 00:35:02,342 

every point of Adzuna job ads based on their location. 

 

573 

00:35:03,192 --> 00:35:06,571 

Saying that the operation we're going to use for this is 

 

574 

00:35:06,840 --> 00:35:09,428 

the point should be within the border, completely within. 

 

575 

00:35:11,898 --> 00:35:16,067 

So, depending on the spec of your computer, 

 

576 

00:35:16,336 --> 00:35:18,623 

it might be faster or take longer 

 

577 

00:35:18,723 --> 00:35:20,153 

so be patient. 

 

578 

00:35:21,399 --> 00:35:22,905 

Let's have a look at the data. 

 

579 

00:35:23,896 --> 00:35:28,721 

So, we do see that we have received extra columns. 

 



580 

00:35:29,321 --> 00:35:30,753 

Let's have a look. 

 

581 

00:35:31,892 --> 00:35:36,078 

So, we have our Adzuna data here 

 

582 

00:35:36,499 --> 00:35:41,310 

and Data Zone information attached to it. 

 

583 

00:35:43,226 --> 00:35:46,364 

But, just an important difference, 

 

584 

00:35:46,464 --> 00:35:48,131 

when we did the join with Glasgow, 

 

585 

00:35:48,231 --> 00:35:52,119 

we only received one set of values for every Adzuna point 

 

586 

00:35:52,219 --> 00:35:55,927 

so it also going to be different for every point, 

 

587 

00:35:56,077 --> 00:35:57,206 

or for most of the points. 



 

588 

00:35:58,963 --> 00:36:02,533 

Let's find average salary advertised per Data Zone. 

 

589 

00:36:02,633 --> 00:36:06,091 

And to do this, I'm going to use group by. 

 

590 

00:36:06,735 --> 00:36:12,008 

So, I'm going to group my dataset by Data Zone name 

 

591 

00:36:12,235 --> 00:36:16,257 

and I'm going to find the average value of salary min column. 

 

592 

00:36:18,848 --> 00:36:20,497 

Right. Let's have a look. 

 

593 

00:36:21,100 --> 00:36:23,256 

So, our data would look like this. 

 

594 

00:36:23,356 --> 00:36:28,174 

They would have Data Zone name and information on average salary min. 

 

595 

00:36:31,145 --> 00:36:33,036 



On this step, I'm going to rename my columns 

 

596 

00:36:33,136 --> 00:36:36,304 

because it's not really salary minimum anymore. 

 

597 

00:36:36,404 --> 00:36:38,702 

It's average salary - mean. 

 

598 

00:36:39,132 --> 00:36:40,582 

So, I'm going to rename the column, 

 

599 

00:36:41,832 --> 00:36:43,101 

just to make it clear. 

 

600 

00:36:44,398 --> 00:36:48,507 

And now, let's join our GeoDataFrame Data Zone 

 

601 

00:36:48,607 --> 00:36:53,855 

with this statistical information of salaries. 

 

602 

00:36:54,111 --> 00:36:57,839 

So, I'm going to, as I just did, based on the name. 

 

603 



00:36:59,130 --> 00:37:00,348 

Let's have a look at the data. 

 

604 

00:37:00,639 --> 00:37:04,838 

So, now we do have the name of the Data Zone, 

 

605 

00:37:05,266 --> 00:37:09,927 

average salary, and the information of the Data Zone. 

 

606 

00:37:10,902 --> 00:37:13,043 

Now here it does contain a geometry column. 

 

607 

00:37:14,422 --> 00:37:18,365 

Let's check the type of salaries by Data Zone. 

 

608 

00:37:19,687 --> 00:37:24,017 

And Pandas says, actually, it's a data frame, 

 

609 

00:37:24,117 --> 00:37:25,969 

despite having a geometry column. 

 

610 

00:37:26,069 --> 00:37:29,091 

And it is recognised as a data frame. 

 



611 

00:37:29,520 --> 00:37:31,873 

So, let's plot it to verify that. 

 

612 

00:37:33,020 --> 00:37:37,209 

And, you see, it's not geographical representation 

 

613 

00:37:37,309 --> 00:37:40,308 

or a map we see with some plots. 

 

614 

00:37:41,626 --> 00:37:47,599 

Pandas clearly recognised our salaries dz as a data frame. 

 

615 

00:37:47,699 --> 00:37:49,407 

So, to do that, we need to 

 

616 

00:37:50,765 --> 00:37:55,375 

say that or create a new GeoDataFrame salaries dz 

 

617 

00:37:55,796 --> 00:38:00,407 

saying that our salaries dz data frame we created in the previous step 

 

618 

00:38:00,978 --> 00:38:05,179 

has got geometry, and this geometry is called geometry. 



 

619 

00:38:06,259 --> 00:38:09,659 

But pretty much, please use this column geometry 

 

620 

00:38:09,759 --> 00:38:11,050 

as our geometry. 

 

621 

00:38:12,251 --> 00:38:14,421 

Now, let's see the columns. 

 

622 

00:38:15,432 --> 00:38:17,303 

Yeah. So, we still have geometry. 

 

623 

00:38:17,403 --> 00:38:18,444 

Just to check. 

 

624 

00:38:19,060 --> 00:38:22,902 

And let's plot our new GeoDataFrame 

 

625 

00:38:23,635 --> 00:38:26,516 

to check that we do have a map now. 

 

626 

00:38:26,616 --> 00:38:28,022 



So, we do have a map now 

 

627 

00:38:29,066 --> 00:38:31,775 

with some empty values. 

 

628 

00:38:31,875 --> 00:38:35,631 

So, these empty values or empty spaces are 

 

629 

00:38:35,731 --> 00:38:41,999 

the Data Zones which did not have any Adzuna job listings 

 

630 

00:38:42,099 --> 00:38:45,536 

so there is no average salary minimum, 

 

631 

00:38:46,444 --> 00:38:49,312 

sorry, average salary available for those Data Zones. 

 

632 

00:38:49,412 --> 00:38:52,161 

So, they just disappear from the dataset because 

 

633 

00:38:52,261 --> 00:38:53,519 

there are no values for them. 

 

634 



00:38:55,578 --> 00:38:59,177 

Right. Let's do some choropleth mapping. 

 

635 

00:39:01,128 --> 00:39:05,446 

So, just wanted to say it's not normalised data for analysis, 

 

636 

00:39:05,765 --> 00:39:08,903 

just an example. So, for our plot, 

 

637 

00:39:09,003 --> 00:39:12,160 

we are going to use the salary mean column 

 

638 

00:39:12,260 --> 00:39:13,799 

Colourmap is yellow, green, blue, 

 

639 

00:39:13,899 --> 00:39:16,948 

but you can use anything else. 

 

640 

00:39:17,144 --> 00:39:22,100 

Figure size is set up on this line. 

 

641 

00:39:22,300 --> 00:39:24,978 

And the scheme I'm using is Quantiles. 

 



642 

00:39:27,088 --> 00:39:29,696 

So, this is our distribution of 

 

643 

00:39:29,796 --> 00:39:34,434 

average salaries between Data Zones in Glasgow. 

 

644 

00:39:34,534 --> 00:39:38,512 

Again, blank spaces are those Data Zones where 

 

645 

00:39:38,612 --> 00:39:40,550 

no information was available. 

 

646 

00:39:41,830 --> 00:39:47,096 

And here, I would like to show you a link for Colourmaps available. 

 

647 

00:39:47,944 --> 00:39:49,484 

Matplotlib. 

 

648 

00:39:50,964 --> 00:39:52,114 

Hold on. Give me a second. 

 

649 

00:39:52,214 --> 00:39:54,733 

So, this is how they will look, 



 

650 

00:39:55,012 --> 00:39:57,390 

what's available, and the names of them 

 

651 

00:39:57,490 --> 00:40:00,528 

which you could use in your code are just provided on the left-hand side. 

 

652 

00:40:04,549 --> 00:40:08,418 

Right. Let's do some cartogram 

 

653 

00:40:09,155 --> 00:40:10,795 

using geoplot. 

 

654 

00:40:11,065 --> 00:40:15,189 

Just to showcase that it does contain lots of visualisation. 

 

655 

00:40:15,931 --> 00:40:17,490 

So, I'm going to 

 

656 

00:40:19,168 --> 00:40:22,977 

convert my salaries Data Zone GeoDataFrame 

 

657 

00:40:24,100 --> 00:40:26,294 



to WGS84. 

 

658 

00:40:27,033 --> 00:40:30,353 

The scale of my data would depend on 

 

659 

00:40:30,453 --> 00:40:34,460 

the information on the values stored in the salary mean column. 

 

660 

00:40:36,142 --> 00:40:41,171 

I guess the edge colour is the colour of those polygons inside. 

 

661 

00:40:41,948 --> 00:40:44,737 

That colour also depends on the value. 

 

662 

00:40:44,837 --> 00:40:47,504 

And the colourmap used here is red. 

 

663 

00:40:47,696 --> 00:40:49,755 

Let's try to do something. 

 

664 

00:40:50,664 --> 00:40:51,782 

This should work. 

 

665 



00:40:52,151 --> 00:40:54,207 

No. Purples. 

 

666 

00:40:57,795 --> 00:41:00,145 

No. Not much better. 

 

667 

00:41:00,505 --> 00:41:03,214 

Well, yeah, you can play with it to make it better. 

 

668 

00:41:03,314 --> 00:41:05,013 

I'm not sure what you see on your screen. 

 

669 

00:41:05,113 --> 00:41:07,301 

Mine, it's quite pale. 

 

670 

00:41:09,164 --> 00:41:10,596 

Let's try something else. 

 

671 

00:41:13,544 --> 00:41:16,674 

I think this one is better. So, you can see that 

 

672 

00:41:17,828 --> 00:41:23,446 

polygon size and its colour depends on the value in the salary mean column. 

 



673 

00:41:25,304 --> 00:41:28,039 

Another quite popular type of visualisation 

 

674 

00:41:28,139 --> 00:41:31,766 

you probably could have seen on the internet. 

 

675 

00:41:32,823 --> 00:41:38,977 

It just shows the dependency of the true size and of some value, 

 

676 

00:41:39,657 --> 00:41:41,743 

and the size represented by some value. 

 

677 

00:41:42,484 --> 00:41:44,272 

Right. And as a last step, 

 

678 

00:41:44,469 --> 00:41:47,296 

I want to show how to export your data 

 

679 

00:41:47,609 --> 00:41:49,418 

on your GeoDataFrame outside. 

 

680 

00:41:50,103 --> 00:41:54,811 

And really, it is just using the command to_file 



 

681 

00:41:54,911 --> 00:41:58,520 

and setting the destination. 

 

682 

00:41:59,383 --> 00:42:02,511 

Or if you're exporting it to a database, 

 

683 

00:42:02,611 --> 00:42:05,790 

you would need to specify the connection details. 

 

684 

00:42:06,456 --> 00:42:08,792 

Location, connection details, schema, 

 

685 

00:42:09,339 --> 00:42:11,389 

and, really, what you want to export. 

 

686 

00:42:11,589 --> 00:42:15,677 

Again, more information is available if you follow this link. 

 

687 

00:42:16,638 --> 00:42:20,956 

So, I'm going to export my clipped GeoDataFrame. 

 

688 

00:42:21,765 --> 00:42:24,903 



to_file. By default, it's a shapefile. 

 

689 

00:42:25,111 --> 00:42:27,731 

And there is an important warning that 

 

690 

00:42:27,831 --> 00:42:32,611 

shapefile does only support 10 characters in the column names 

 

691 

00:42:32,711 --> 00:42:35,500 

so all the names would be truncated. 

 

692 

00:42:37,434 --> 00:42:39,394 

It is known limitation of a shapefile. 

 

693 

00:42:39,523 --> 00:42:42,618 

So, please bear in mind that 

 

694 

00:42:42,718 --> 00:42:47,568 

if your GeoDataFrame has a very descriptive column, 

 

695 

00:42:47,825 --> 00:42:52,156 

it probably would be better to export it into some other format. 

 

696 



00:42:59,113 --> 00:43:05,762 

I'll probably show you how our data looks. 

 

697 

00:43:07,921 --> 00:43:09,950 

Okay. Give me a second. 

 

698 

00:43:14,258 --> 00:43:16,617 

So, what I'll do is, I'm going to 

 

699 

00:43:19,047 --> 00:43:21,666 

share some other screen. 

 

700 

00:43:22,266 --> 00:43:24,225 

So, it's going to be QGIS. 

 

701 

00:43:25,335 --> 00:43:28,784 

A kind of open source traditional GIS software. 

 

702 

00:43:29,307 --> 00:43:30,848 

And I'm going to open 

 

703 

00:43:36,379 --> 00:43:39,387 

my exported clipped GeoDataFrame. 

 



704 

00:43:39,487 --> 00:43:41,136 

So, by just dragging and dropping. 

 

705 

00:43:41,886 --> 00:43:47,495 

It's similar to what we've seen in our notebook. 

 

706 

00:43:48,145 --> 00:43:49,833 

I'm going to share 

 

707 

00:43:51,682 --> 00:43:57,450 

my notebook again. 

 

708 

00:43:57,708 --> 00:43:58,963 

And this is it. 

 

709 

00:43:59,065 --> 00:44:01,574 

Thank you very much for your participation. 

 

710 

00:44:02,880 --> 00:44:05,368 

Please visit our website to find out more about 

 

711 

00:44:05,468 --> 00:44:07,095 

our upcoming webinars. 



 

712 

00:44:08,154 --> 00:44:11,354 

And I'm ready for Questions and Answers. 

 

713 

00:44:12,072 --> 00:44:13,250 

If you have any. 

 

714 

00:44:13,350 --> 00:44:14,458 

Thank you. 

 

715 

00:44:16,386 --> 00:44:18,816 

So, I'm going to open chat 

 

716 

00:44:19,642 --> 00:44:22,652 

and check if there are any questions. 

 

717 

00:44:25,880 --> 00:44:29,869 

I see that quite a few people are asking where to get the data. 

 

718 

00:44:30,768 --> 00:44:32,737 

It has been uploaded to GitHub. 

 

719 

00:44:33,676 --> 00:44:34,923 



It's available for you. 

 

720 

00:44:35,023 --> 00:44:39,417 

And I'm going to add this presentation, this slideshow presentation, 

 

721 

00:44:39,976 --> 00:44:43,915 

to what you have on GitHub. 

 

722 

00:44:44,431 --> 00:44:47,326 

So, I'm going to at it on a later date. 

 

723 

00:44:47,664 --> 00:44:52,413 

So, it can be accessible for you quite soon. 

 

724 

00:44:56,003 --> 00:44:57,032 

Thanks, Nadiia. 

 

725 

00:44:57,132 --> 00:45:03,371 

Yeah, and I am also posting the link that they usually put 

 

726 

00:45:04,300 --> 00:45:09,788 

for past presentations and resources afterwards. 

 

727 



00:45:10,158 --> 00:45:11,974 

You wait a few days, I think. 

 

728 

00:45:12,074 --> 00:45:13,343 

Yeah, it's here. 

 

729 

00:45:14,338 --> 00:45:17,700 

Okay, yeah. Maxwell has a question 

 

730 

00:45:17,800 --> 00:45:21,148 

on choropleth maps. 

 

731 

00:45:21,248 --> 00:45:23,076 

Cool. Choropleth maps, yes. 

 

732 

00:45:24,344 --> 00:45:27,309 

Can these choropleth maps be made interactive? 

 

733 

00:45:27,409 --> 00:45:29,317 

Yeah, I would also want to know that. 

 

734 

00:45:29,766 --> 00:45:35,465 

Yes, but it does require different libraries 

 



735 

00:45:35,565 --> 00:45:37,321 

and it's, kind of, another complexity. 

 

736 

00:45:37,439 --> 00:45:40,368 

I did not show anything in this lab 

 

737 

00:45:40,586 --> 00:45:42,646 

just to keep it simple and introductive. 

 

738 

00:45:42,879 --> 00:45:44,399 

But yeah, it is possible. 

 

739 

00:45:45,939 --> 00:45:47,939 

Just a different set of libraries to use. 

 

740 

00:45:48,148 --> 00:45:50,305 

So, something like Bokeh maybe 

 

741 

00:45:50,776 --> 00:45:52,162 

or Dash. 

 

742 

00:45:53,279 --> 00:45:58,229 

So, both of them can display geographical information easily 



 

743 

00:45:58,329 --> 00:46:00,534 

but do provide some interactivity. 

 

744 

00:46:01,784 --> 00:46:04,089 

Yeah, and I was wondering, 

 

745 

00:46:04,233 --> 00:46:08,741 

earlier you mentioned something about 

 

746 

00:46:08,948 --> 00:46:11,210 

the boundary files. 

 

747 

00:46:11,606 --> 00:46:13,846 

Pretty early on in the presentation. 

 

748 

00:46:13,946 --> 00:46:16,784 

Could you also share those links? 

 

749 

00:46:17,714 --> 00:46:20,845 

Right. I'm going to share my screen again. 

 

750 

00:46:21,854 --> 00:46:27,801 



So, in the chat, Chau Man has sent you a link to GitHub 

 

751 

00:46:28,000 --> 00:46:33,069 

where you can find the data, the exercise itself. 

 

752 

00:46:33,169 --> 00:46:35,019 

So, it's an exercise folder. 

 

753 

00:46:36,169 --> 00:46:39,207 

So, if you open this GeoPython lab, 

 

754 

00:46:39,307 --> 00:46:40,405 

you would have... 

 

755 

00:46:41,335 --> 00:46:44,103 

So, because I have it here, 

 

756 

00:46:44,211 --> 00:46:48,060 

you would have this notebook with all the links attached. 

 

757 

00:46:49,378 --> 00:46:50,875 

So, please have a look there. 

 

758 



00:46:50,975 --> 00:46:52,273 

I'm trying to find my... 

 

759 

00:46:52,685 --> 00:46:59,330 

This presentation and notebook, I'll update on GitHub later. 

 

760 

00:46:59,430 --> 00:47:03,615 

And it is pretty much the same as what you have received, 

 

761 

00:47:03,777 --> 00:47:06,260 

with very tiny modifications and additions. 

 

762 

00:47:07,930 --> 00:47:12,684 

So, please see GitHub and the notebook, if you scroll down. 

 

763 

00:47:13,523 --> 00:47:15,931 

you will have all the links, 

 

764 

00:47:17,010 --> 00:47:18,160 

all the datasets. 

 

765 

00:47:18,260 --> 00:47:19,448 

So, it's BoundaryLine. 

 



766 

00:47:20,488 --> 00:47:22,317 

I think this is the one mentioned. 

 

767 

00:47:23,175 --> 00:47:27,634 

As well, I can send those in the chat. 

 

768 

00:47:29,393 --> 00:47:30,422 

I need to stop sharing. 

 

769 

00:47:30,522 --> 00:47:31,551 

This is it. 

 

770 

00:47:33,170 --> 00:47:37,488 

And there are many open datasets available on the Ordnance Survey website, 

 

771 

00:47:37,588 --> 00:47:44,136 

something like Open Roads, Code-Point, 

 

772 

00:47:45,484 --> 00:47:48,881 

and Zoomstack, which are fantastic for visualisation 

 

773 

00:47:49,735 --> 00:47:54,355 

and to work with for geospatial analysis. 



 

774 

00:47:54,913 --> 00:47:57,903 

They're not very detailed in some respects 

 

775 

00:47:58,003 --> 00:48:02,471 

but may be useful as datasets to use 

 

776 

00:48:03,052 --> 00:48:05,480 

when you're learning new libraries or a tool. 

 

777 

00:48:06,119 --> 00:48:07,709 

Are there any more questions? 

 

778 

00:48:08,515 --> 00:48:10,874 

Does the projection used tend to vary by country? 

 

779 

00:48:12,933 --> 00:48:15,191 

Well... Right. 

 

780 

00:48:15,291 --> 00:48:17,389 

The question is, does the projection used 

 

781 

00:48:17,489 --> 00:48:19,188 



tend to vary by country? 

 

782 

00:48:19,307 --> 00:48:20,375 

Well, yes, it does. 

 

783 

00:48:20,475 --> 00:48:24,694 

Typically, every country has its own projection 

 

784 

00:48:28,502 --> 00:48:32,840 

which is selected based on their best fit of the area. 

 

785 

00:48:34,692 --> 00:48:39,782 

And a different projection which preserve either directions, angle 

 

786 

00:48:40,770 --> 00:48:42,227 

or areas. 

 

787 

00:48:42,327 --> 00:48:48,716 

And again, those three would be used depending on what you want 

 

788 

00:48:49,016 --> 00:48:52,331 

to have less distortion of, let's say. 

 

789 



00:48:52,784 --> 00:48:54,592 

And the second part of... 

 

790 

00:48:54,692 --> 00:48:59,815 

So, yes, different countries tend to have different projections. 

 

791 

00:48:59,915 --> 00:49:03,581 

Or does that tend to be a standard reference? 

 

792 

00:49:04,400 --> 00:49:08,000 

So, data collected, via 

 

793 

00:49:09,160 --> 00:49:16,823 

GPS devices, so mobile phones, are provided in WGS84. 

 

794 

00:49:18,677 --> 00:49:21,205 

Absolutely forgotten what this stands for. 

 

795 

00:49:25,575 --> 00:49:28,993 

So, it's World Geodetic System. 

 

796 

00:49:29,723 --> 00:49:32,441 

1984 is the year it was created. 

 



797 

00:49:35,467 --> 00:49:39,276 

So, this is quite a popular CRS to use 

 

798 

00:49:39,376 --> 00:49:40,875 

for this type of data. 

 

799 

00:49:41,843 --> 00:49:45,873 

The type of data which you see, something like Google Maps, 

 

800 

00:49:45,973 --> 00:49:47,503 

it's called Web Mercator. 

 

801 

00:49:47,603 --> 00:49:51,252 

It's a slightly different transformation than the plot. 

 

802 

00:49:52,062 --> 00:49:53,501 

But what I wanted to say. 

 

803 

00:49:54,571 --> 00:49:58,629 

If your data is projected to some CRS, 

 

804 

00:49:58,778 --> 00:50:02,287 

it's very easy to reproject it to some other. 



 

805 

00:50:02,967 --> 00:50:06,356 

If you know where your data is and what projection it is, 

 

806 

00:50:06,456 --> 00:50:09,062 

you can easily reproject it to something else. 

 

807 

00:50:10,472 --> 00:50:15,641 

So, for Britain or, well, government 

 

808 

00:50:15,869 --> 00:50:18,417 

datasets are provided in the British National Grid. 

 

809 

00:50:18,517 --> 00:50:19,875 

But again, if you're new to it, 

 

810 

00:50:19,975 --> 00:50:21,781 

if you show information from the internet, 

 

811 

00:50:21,881 --> 00:50:23,636 

you can easily reproject them, 

 

812 

00:50:23,736 --> 00:50:28,436 



those data to WGS84 or the other way round to British National Grid. 

 

813 

00:50:29,017 --> 00:50:30,866 

I hope I explained it well. 

 

814 

00:50:30,966 --> 00:50:34,224 

It's quite a complex topic so I would really suggest you 

 

815 

00:50:34,802 --> 00:50:36,662 

scroll through the links I've provided 

 

816 

00:50:36,762 --> 00:50:40,781 

and do additional reading to understand that better. 

 

817 

00:50:43,441 --> 00:50:44,619 

It's quite a complex topic. 

 

818 

00:50:44,719 --> 00:50:45,757 

Thank you. 

 

819 

00:50:46,055 --> 00:50:47,413 

So, as I mentioned before, 

 

820 



00:50:48,534 --> 00:50:52,341 

there's a video recording of this webinar 

 

821 

00:50:52,640 --> 00:50:58,368 

which will be available in an accessible format at a later date. 

 

822 

00:50:58,468 --> 00:51:03,912 

So, you can view it. And my presentation/notebook will be 

 

823 

00:51:04,012 --> 00:51:06,049 

uploaded to GitHub as well. 

 

824 

00:51:07,309 --> 00:51:09,147 

So, I think this is it. 

 

825 

00:51:09,247 --> 00:51:11,964 

Thank you everybody for joining. Thank you for all these questions. 

 

826 

00:51:13,552 --> 00:51:15,231 

If you're interested in the data, 

 

827 

00:51:15,331 --> 00:51:21,590 

you can contact UBDC or register with Adzuna for the API. 

 



828 

00:51:22,039 --> 00:51:24,456 

And I think in a few weeks' time 

 

829 

00:51:24,556 --> 00:51:28,013 

there's going to be a call for interest 

 

830 

00:51:28,113 --> 00:51:30,242 

in the licensed Adzuna dataset. 

 

831 

00:51:30,629 --> 00:51:31,757 

Thank you everybody. 

 


