Exploring and analysing open transport data (with a focus on SCOOT data and bikeshare data)

Transcript from webinar video recording

```
1
00:00:01,643 --> 00:00:03,353
```

This is about, as I've said,

2
00:00:03,453 --> 00:00:08,862
this is about exploring and analysing the open transport data sets

3

00:00:09,700 --> 00:00:14,119
that are easily available to us these days.

4
00:00:14,338 --> 00:00:18,469
And, of course, it's not going to be exhaustive.

5
00:00:20,678 --> 00:00:23,079
What I'm trying to do is give some examples

6

00:00:23,179 --> 00:00:26,120
so that we know where to look

7
00:00:26,220 --> 00:00:30,919
when we would like to find out more about our environment

8
00:00:31,019 --> 00:00:34,499
and the transport issues around us.

9
00:00:34,689 --> 00:00:35,950
So, that's the goal.

10
00:00:36,050 --> 00:00:38,587
It's not like I can give an exhaustive list of

11
00:00:38,687 --> 00:00:40,716
all these different data sets.

12
00:00:40,816 --> 00:00:43,495
That's not the case. But I try to introduce

13
00:00:43,595 --> 00:00:48,124
some in a way such that it becomes more accessible.

00:00:49,133 --> 00:00:51,273
So, okay, let's get started.

15
00:00:51,373 --> 00:00:55,173
And then, the overview of the session.

16
00:00:55,273 --> 00:00:58,303
I plan to not use up the whole two hours.

17
00:00:58,403 --> 00:01:02,833
I find that to be a bit too much for both the audience and myself, of course.

18
00:01:03,300 --> 00:01:05,778
So, the first part,

19
00:01:05,878 --> 00:01:10,608
I will try to keep to time and finish before 10:45.

20
00:01:10,708 --> 00:01:15,407
And we will focus on this presentation

21
00:01:15,755 --> 00:01:20,734
where I'll try to introduce some of the sources of open data 22

00:01:21,183 --> 00:01:26,133
and then, how do we obtain them

23
00:01:26,233 --> 00:01:29,193
and what do they look like in general.

24
00:01:29,353 --> 00:01:33,361
And then, very briefly, I will go through a few applications that

25
00:01:33,461 --> 00:01:36,378
I came across in these days.

26
00:01:36,587 --> 00:01:39,846
You know, we all live in a pretty strange time these days

27
00:01:39,946 --> 00:01:41,965
with COVID and everything.

28
00:01:44,739 --> 00:01:48,769
For these applications, l'll focus on the later two,

```
00:01:48,869 --> 00:01:51,034
```

which are about COVID and mobility

30

00:01:51,134 --> 00:01:54,163
and then this is actually demonstrated,

31
00:01:55,609 --> 00:02:00,649
the use of this data set was demonstrated by a blog post

32
00:02:00,858 --> 00:02:04,258
on the website of the Urban Big Data Centre

33
00:02:04,358 --> 00:02:06,239
written by our colleague.

34
00:02:07,100 --> 00:02:09,720
And then, the other one would be

35
00:02:09,820 --> 00:02:16,939
a paper that is, I think, quite close to publication

36
00:02:17,039 --> 00:02:21,848
and it will be about the shared bikes in Glasgow.

00:02:22,016 --> 00:02:24,785
And then, the trip data that we use

38
00:02:24,885 --> 00:02:29,532
and how from there we turned it into a paper.

39
00:02:29,774 --> 00:02:31,713
So, that's what we are going to do.

40
00:02:33,858 --> 00:02:37,507
Then, after a short break, we will go into the practical session.

41
00:02:37,748 --> 00:02:42,431
And then, if you have asked to do, you are welcome to follow along.

42
00:02:42,531 --> 00:02:44,334
If you don't, it's still fine.

43
00:02:45,048 --> 00:02:48,715
I will share the script and the presentation afterwards.

44
00:02:49,495 --> 00:02:51,601
So, okay, let's get started.

45

00:02:51,926 --> 00:02:55,463
A little bit about me, not too much.

46
00:02:55,563 --> 00:02:57,512
I'm currently a research associate

47
00:02:57,612 --> 00:03:01,338
in transport analytics at the Urban Big Data Centre of

48
00:03:01,500 --> 00:03:03,046
University of Glasgow.

49
00:03:03,395 --> 00:03:07,253
So, during my PhD and after my PhD,

50
00:03:07,481 --> 00:03:11,796
what I've been interested in is mainly transport taxes such as

51
00:03:11,896 --> 00:03:18,024
road pricing, and then optimal public transport supply,

52
00:03:18,124 --> 00:03:22,821
and also accessibility, which I'm currently working on.

53
00:03:23,360 --> 00:03:27,956
And a few publications that I had

54
00:03:28,056 --> 00:03:33,544
with my colleagues are also about these issues, mainly.

55
00:03:34,093 --> 00:03:36,410
The first one is about rural areas.

56
00:03:39,584 --> 00:03:44,205
Our goal was to evaluate whether it is a good idea

57
00:03:44,305 --> 00:03:48,133
to have these kinds of very expensive rail systems

58
00:03:48,233 --> 00:03:52,320
in rural areas with very low-density populations.

59
00:03:52,420 --> 00:03:57,076
And then, sometimes replacing it with buses is actually a better idea.

00:03:57,283 --> 00:04:01,490
And then, the case study was from Sweden

61
00:04:01,590 --> 00:04:06,457
because one of our co-authors is from Sweden

62
00:04:06,557 --> 00:04:08,543
so we get access to the data.

63
00:04:09,109 --> 00:04:11,336
And then, the other one, which is

64
00:04:12,274 --> 00:04:15,679
also using Swedish data,

65
00:04:17,534 --> 00:04:22,260
we evaluated whether buses

66
00:04:23,955 --> 00:04:30,087
and cyclists, who are hindering who.

67
00:04:30,235 --> 00:04:32,862
It's very difficult to say because

68
00:04:33,097 --> 00:04:35,004
if you imagine that,

69
00:04:36,021 --> 00:04:39,548
I think some drivers are pretty annoyed by cyclists.

70
00:04:40,513 --> 00:04:42,470
But then, in the case of buses

71
00:04:42,570 --> 00:04:47,457
in a city area, like the city centre of Stockholm,

72
00:04:47,642 --> 00:04:51,488
with a bus line, they have to go to the bus stops

73
00:04:51,588 --> 00:04:54,675
and then stop at the bus stops.

74
00:04:54,775 --> 00:04:57,241
And what happened is that

75
00:04:58,981 --> 00:05:01,577
the cycle lane suddenly disappeared,

00:05:01,677 --> 00:05:05,894
so the cyclists would have to move around, if you see what I mean.

77
00:05:05,994 --> 00:05:08,520
They would have to switch to another lane.

78
00:05:12,853 --> 00:05:18,443
Then they would have to interfere with the other traffic in the outer lanes.

79
00:05:18,755 --> 00:05:19,877
So, that's the idea.

80
00:05:19,977 --> 00:05:22,954
And then we tried to evaluate this interaction.

81
00:05:23,460 --> 00:05:26,297
And then, in this paper, what we do is

82
00:05:26,397 --> 00:05:30,204
we usually use a more aggregate model.

83
00:05:30,400 --> 00:05:34,276

So, the key as to whether these models

84
00:05:34,376 --> 00:05:38,322
work well or not would be

85
00:05:38,422 --> 00:05:42,274
to evaluate the interactions between different modes.

86
00:05:42,374 --> 00:05:43,780
So, that's usually the key.

87
00:05:43,880 --> 00:05:45,186
How would one mode...

88
00:05:45,286 --> 00:05:48,743
Like, okay, what if there is road pricing?

89
00:05:49,150 --> 00:05:54,308
How will the ridership of public transport react?

90
00:05:54,400 --> 00:05:56,167
So, that's the key idea.

91

00:05:56,267 --> 00:05:58,504
The interaction between modes.

92
00:05:59,890 --> 00:06:02,407
Why do I talk so much about this?

93
00:06:02,507 --> 00:06:04,834
Because it is actually related to

94
00:06:04,934 --> 00:06:07,440
the paper that I'm going to talk about a bit later,

95
00:06:07,540 --> 00:06:10,383
about the interaction between

96
00:06:11,118 --> 00:06:15,089
the subway system and the shared bike system in Glasgow.

97
00:06:15,669 --> 00:06:18,705
So, okay, a bit about open data.

98
00:06:22,130 --> 00:06:26,418
This is just a very brief introduction to it.

99
00:06:27,678 --> 00:06:29,873
In the title of this session,

100
00:06:29,973 --> 00:06:33,249
I actually wrote open data, I think.

101
00:06:33,338 --> 00:06:35,954
But then, you need to be really careful

102
00:06:36,054 --> 00:06:40,065
that not all of these are Open Government License

103
00:06:40,165 --> 00:06:42,250
where you can pretty much,

104
00:06:44,140 --> 00:06:46,794
roughly speaking, you can reuse them,

105
00:06:46,894 --> 00:06:50,240
you can basically redistribute them most of the time.

106
00:06:50,755 --> 00:06:55,060
But then, you have to be really careful with the licensing terms

107
00:06:55,160 --> 00:06:57,655
when it comes to some of the data

108
00:06:57,755 --> 00:07:02,221
that does not necessarily have an open licence.

109
00:07:02,514 --> 00:07:06,279
So, yeah, you can see that many of them would be

110
00:07:06,455 --> 00:07:09,264
Open Government Licence later on.

111
00:07:11,483 --> 00:07:17,285
So, I think that many of these data sources

112
00:07:17,385 --> 00:07:20,651
that we are going to talk about,

113

00:07:21,976 --> 00:07:27,494
it's usually quite straightforward in that we know what they are.

114
00:07:27,800 --> 00:07:29,819

These tools, some are very straightforward,

115
00:07:29,919 --> 00:07:31,828
like Department for Transport,

116

00:07:31,928 --> 00:07:35,827
Transport for London, they have a very, very good page

117
00:07:35,927 --> 00:07:40,095
with many different data sets.

118
00:07:40,594 --> 00:07:43,932
And then, for some of the city council portals,

119
00:07:45,360 --> 00:07:47,939
some of them I'm also going to

120

00:07:48,268 --> 00:07:51,513
talk more about in the second half of the session,

121
00:07:54,572 --> 00:07:57,123
sometimes you might need to register

00:07:57,223 --> 00:08:01,101
to get a key or a login name to use them.

123
00:08:01,201 --> 00:08:07,915
And it's not exactly that easy because you might not

124
00:08:08,015 --> 00:08:12,283
get it in time when you try to use the data.

125
00:08:12,383 --> 00:08:15,991
And sometimes the site might not be working very well.

126
00:08:16,198 --> 00:08:19,428
So, let's see how we get on with it today.

127
00:08:19,528 --> 00:08:22,776
I believe that we included a link

128
00:08:22,991 --> 00:08:28,003
for one of the APIs for the Glasgow City Council data.

129
00:08:28,103 --> 00:08:33,041
But then I found out that link might not work.

130
00:08:33,141 --> 00:08:34,889
So, let's see.

131
00:08:35,557 --> 00:08:39,479
Another very important source, of course, is

132
00:08:39,579 --> 00:08:44,668
the Urban Big Data Centre collection of data that

133
00:08:44,768 --> 00:08:48,046
if you take a look,

134
00:08:48,521 --> 00:08:49,807
very briefly.

135
00:08:49,907 --> 00:08:51,885
And you can see that

136
00:08:57,040 --> 00:09:00,741
we acquire a pretty good collection of data,

137
00:09:00,841 --> 00:09:03,630
such as this CCTV data

138

00:09:03,730 --> 00:09:06,217
where they process the image and the video

139
00:09:06,317 --> 00:09:11,407
such that you could, if you specified the location,

140
00:09:11,507 --> 00:09:15,124
you could get a count of the pedestrians or cyclists

141

00:09:15,224 --> 00:09:16,982
or vehicles and so on.

142
00:09:17,640 --> 00:09:21,266
And some of the very new stuff, other than that,

143
00:09:22,117 --> 00:09:24,916
related to transport is this Huq data set,

144

00:09:25,232 --> 00:09:27,693
which is mobile phone data

145

00:09:27,920 --> 00:09:30,779
and very comprehensive and pretty detailed

146
00:09:30,879 --> 00:09:35,118
whenever the users use a certain app.

147
00:09:35,373 --> 00:09:38,124
Not a certain app. It's a collection of apps

148
00:09:38,224 --> 00:09:42,532
that the company works with

149
00:09:42,632 --> 00:09:46,209
so that we could have the location of

150
00:09:46,309 --> 00:09:48,767
the users.

151

00:09:50,265 --> 00:09:52,444
So, this could be pretty useful

152
00:09:52,762 --> 00:09:55,701
in terms of mobility research.

00:09:56,270 --> 00:09:58,608
And you could go through this

154
00:09:58,815 --> 00:10:01,783
when you have time and applied.

155
00:10:03,029 --> 00:10:05,250
Many of them are not open licence

156
00:10:05,350 --> 00:10:07,678
but then, of course, you can apply to use them

157
00:10:07,778 --> 00:10:09,856
from the Urban Big Data Centre

158
00:10:09,956 --> 00:10:12,140
and then be careful with the licencing part

159
00:10:12,240 --> 00:10:14,158
and see what you can do with them.

160
00:10:14,688 --> 00:10:18,206
And also, one thing that I found is

161
00:10:18,306 --> 00:10:19,335
GitHub.

162
00:10:21,904 --> 00:10:23,571
At first, I didn't realise.

163
00:10:23,671 --> 00:10:25,268
I know that GitHub exists

164
00:10:25,368 --> 00:10:27,107
but then I found out that now,

165
00:10:28,071 --> 00:10:30,930
sometimes when you browse through GitHub,

166
00:10:31,030 --> 00:10:34,077
you find different packages and different scripts.

167
00:10:34,177 --> 00:10:39,494
And that's led to some surprising discoveries

168
00:10:39,594 --> 00:10:41,143
with data sets.

169

00:10:41,299 --> 00:10:42,490
That's my opinion.

170
00:10:42,590 --> 00:10:44,529
So, you might look through that later.

171
00:10:44,763 --> 00:10:47,289
And for the map data,

172
00:10:48,047 --> 00:10:50,796
Google Maps, of course, they have a lot of

173
00:10:53,075 --> 00:10:56,534
different data that you could use,

174
00:10:56,634 --> 00:10:58,414
like distance matrices,

175

00:10:58,514 --> 00:11:00,113
you could specify the route

176
00:11:00,213 --> 00:11:02,321
and you can calculate the travel time

177
00:11:02,421 --> 00:11:05,259
and report it in pretty much real-time.

178
00:11:05,639 --> 00:11:08,408
But then, you will have to be very careful

179

00:11:08,508 --> 00:11:10,986
because you have to enter your credit card

180
00:11:11,524 --> 00:11:14,593
in order to use the API

181
00:11:14,693 --> 00:11:17,817
and you would not want to request too much

182

00:11:17,917 --> 00:11:21,135
and end up having to pay a whole lot for that.

183
00:11:22,025 --> 00:11:24,163
And also, OpenStreetMap.

00:11:24,863 --> 00:11:27,648
That's also a very good source

185
00:11:27,748 --> 00:11:32,176
for things like points of interest and so on.

186
00:11:32,573 --> 00:11:34,977
And if you were from academia

187
00:11:35,077 --> 00:11:38,295
or you were a student, if I remember correctly,

188
00:11:38,395 --> 00:11:41,372
you can also register to use Digimap.

189
00:11:42,583 --> 00:11:44,161
So, these kinds of data sources,

190
00:11:44,261 --> 00:11:47,438
they could be real-time or historical.

191
00:11:47,552 --> 00:11:50,100
Historical is simpler most of the time

192
00:11:50,200 --> 00:11:51,837
if you know it's historical.

193
00:11:51,937 --> 00:11:56,002
Of course, they would just dump the data on the site

194
00:11:56,102 --> 00:11:58,769
and then you can just click download and you get it.

195
00:11:59,346 --> 00:12:01,609
It's usually more straightforward.

196
00:12:01,709 --> 00:12:03,157
But then, for real-time data,

197
00:12:03,257 --> 00:12:05,584
usually it's more complicated because

198
00:12:05,793 --> 00:12:08,658
it gets updated a lot.

199
00:12:09,248 --> 00:12:11,846
Like, every minute or every five minutes.

200

00:12:12,146 --> 00:12:14,143
And if you want to get it

201
00:12:14,243 --> 00:12:15,750
or research your purpose,

202
00:12:16,807 --> 00:12:19,047
then you will have to make use of

203
00:12:20,305 --> 00:12:22,383
some simple tools in order to

204
$00: 12: 22,581$--> 00:12:24,830
just get this data over time.

205
00:12:25,300 --> 00:12:27,168
And how do we get it?

206
00:12:27,268 --> 00:12:30,165
Of course, yeah, when I was saying about historical data,

207
00:12:30,265 --> 00:12:31,904
most of the time you can download them.

208
00:12:32,004 --> 00:12:34,011
And then, for the real-time ones,

209
00:12:34,111 --> 00:12:35,637
most of the time you will need

210
00:12:35,737 --> 00:12:37,984
to make use of API

211
00:12:38,084 --> 00:12:40,322
or, if you are familiar with it,

212
00:12:40,422 --> 00:12:42,404
you can do some web scraping.

213
00:12:42,554 --> 00:12:44,683
So, in the second half of the session,

214
00:12:44,783 --> 00:12:46,859
we will try to use R Studio

00:12:47,486 --> 00:12:52,340

to get access to some of this real-time data,

216

00:12:52,440 --> 00:12:54,487
like every five minutes,

217
00:12:54,587 --> 00:12:58,213
what is the count of traffic in certain locations.

218
00:13:00,662 --> 00:13:02,041
Okay. So, yeah.

219
00:13:02,141 --> 00:13:05,809
Cars. We briefly talked about this.

220
00:13:05,909 --> 00:13:07,525
The traffic count.

221
00:13:07,697 --> 00:13:08,763
We have it.

222
00:13:09,900 --> 00:13:12,357
The reasons that I put Brussels here is

223
00:13:12,457 --> 00:13:16,754
because I planned to use

224
00:13:16,854 --> 00:13:21,576
the Glasgow traffic counts

225
00:13:21,676 --> 00:13:24,623
and the data sets as a demonstration,

226
00:13:24,723 --> 00:13:26,317
but then I found out that

227
00:13:27,618 --> 00:13:30,889
you may not be able to get an API key in time.

228
00:13:30,977 --> 00:13:34,265
So, I think that, to avoid that issue,

229
00:13:34,801 --> 00:13:36,245
to avoid registration,

230
00:13:36,441 --> 00:13:39,114
we could try the Brussels one later

231

00:13:39,295 --> 00:13:41,142
because it doesn't require a key.

232
00:13:41,242 --> 00:13:43,118
You can just request it

233
00:13:44,086 --> 00:13:46,691
using two lines in R

234

00:13:47,353 --> 00:13:49,110
and then you get the count.

235
00:13:50,206 --> 00:13:52,064
Okay. And also,

236
00:13:52,430 --> 00:13:54,257
this is also real-time, obviously.

237

00:13:54,357 --> 00:13:56,423
You want to know about parking availability

238
00:13:56,523 --> 00:13:58,430
and you want to know it,

239
00:13:58,906 --> 00:14:02,717
to be updated in real-time.

240

00:14:03,697 --> 00:14:07,575
Sometimes, traffic events might also be interesting

241

00:14:07,773 --> 00:14:13,356
and you might want to know what happened in a certain part of

242
00:14:13,456 --> 00:14:16,284
the motorway, what happened with that part.

243
00:14:16,853 --> 00:14:17,967
If there were accidents

244

00:14:18,067 --> 00:14:20,568
or some sort of closure

245
00:14:21,067 --> 00:14:22,725
that we might want to know about.

00:14:23,065 --> 00:14:25,082

And then, the next thing would be

247
00:14:25,182 --> 00:14:27,020
some Variable Message System.

248
00:14:29,300 --> 00:14:32,106
That's just the message boards you can see

249
00:14:32,206 --> 00:14:37,144
when you are on the motorway.

250
00:14:39,609 --> 00:14:44,540
When we try to look at them in the second half of the session,

251
00:14:44,640 --> 00:14:46,928
then we could also show some of

252
00:14:47,028 --> 00:14:49,716
these messages, what they say.

253
00:14:49,976 --> 00:14:52,443
Like, over time, during COVID time,

254
00:14:52,543 --> 00:14:55,705
they ask you to stay safe and stay home and so on.

255
00:14:56,044 --> 00:14:57,682
And then, one thing that I was...

256
00:14:58,682 --> 00:15:02,610
There's actually a picture of the Variable Message sign here.

257
00:15:02,710 --> 00:15:05,047
You can see you can specify the location

258
00:15:05,665 --> 00:15:10,414
and then you get a message about the roadworks at a certain point.

259
00:15:11,023 --> 00:15:16,121
And another thing that I have been quite interested in are the potholes.

260
00:15:16,221 --> 00:15:18,129
And yeah, I find that quite interesting.

261
00:15:18,229 --> 00:15:23,860
FixMyStreet is actually not only about potholes.

262
00:15:24,550 --> 00:15:28,258
But then, I actually laughed a bit when I saw this one.

263
00:15:28,358 --> 00:15:30,907
You can see that people are reporting potholes

264
00:15:31,007 --> 00:15:32,395
because they are so pissed off.

265

00:15:32,495 --> 00:15:36,164
And they report these kinds of dangerous potholes.

266
00:15:36,264 --> 00:15:37,920
And they take pictures of them.

267
00:15:38,020 --> 00:15:40,239
And then, if you read it carefully,

268
00:15:40,339 --> 00:15:41,517
if you try to read this,

269
00:15:41,617 --> 00:15:43,675
you can even see that update.

270
00:15:44,259 --> 00:15:47,547
I thought that it would be from the city council or something, but no.

271
00:15:47,647 --> 00:15:49,780
It's actually from another user,

272
00:15:49,880 --> 00:15:53,308
saying that there's not a chance they'll repair it or deal with it.

273
00:15:53,616 --> 00:15:55,695
So, it has been quite interesting.

274
00:15:55,795 --> 00:15:58,642
So, if you were looking at a road network,

275
00:15:58,742 --> 00:16:02,806
I suppose this information about

276
00:16:02,906 --> 00:16:05,373
the quality of the road would also be

00:16:05,473 --> 00:16:08,280

quite useful.

278

00:16:09,514 --> 00:16:15,851
So, of course, accident reports are also

279
00:16:15,951 --> 00:16:17,530
part of the picture.

280
00:16:17,958 --> 00:16:19,405
And, yeah.

281
00:16:19,505 --> 00:16:21,432
Then we move on to another mode

282
00:16:21,532 --> 00:16:23,929
with bikes and pedestrians.

283
00:16:24,422 --> 00:16:28,429
Then we have this, again, from UBDC.

284
00:16:28,529 --> 00:16:32,967
I think we saw that when I was showing the website of UBDC.

285
00:16:33,296 --> 00:16:39,023
Where you have this API that you can request

286
00:16:40,248 --> 00:16:44,909
the count of pedestrians and other vehicles or cyclists

287
00:16:45,018 --> 00:16:47,034
over a certain period of time.

288
00:16:49,352 --> 00:16:53,691
You could also go over with cycling infrastructure.

289
00:16:53,987 --> 00:16:56,333
These are links. But I don't think I will

290
00:16:56,433 --> 00:16:59,505
show every one of them, but I will share it later.

291
00:16:59,975 --> 00:17:04,989
And then, one focus that we will be

292
00:17:06,124 --> 00:17:09,351
talking about in the second half of this session

293

00:17:09,451 --> 00:17:13,139
and also, it would be related to one of my papers is

294
00:17:14,442 --> 00:17:16,663
the use of shared bike data.

295
00:17:17,231 --> 00:17:19,250
And there are usually,

296
00:17:19,350 --> 00:17:22,367
if you go on a site of a shared bike company

297
00:17:22,467 --> 00:17:23,695
about their data sets,

298
00:17:23,795 --> 00:17:25,652
there would be two different links.

299

00:17:25,752 --> 00:17:27,471
Usually, they have this data dump

300
00:17:27,571 --> 00:17:30,759
where they have a lot of files

301
00:17:30,859 --> 00:17:33,907
about the details of every trip.

302
00:17:34,007 --> 00:17:37,276
When a bike is unlocked and when it is returned.

303
00:17:37,595 --> 00:17:38,723
And so on.

304
00:17:40,500 --> 00:17:43,879
I find this to be the most useful one

305
00:17:43,979 --> 00:17:47,008
and then we make use of this

306
00:17:47,108 --> 00:17:48,726
in one of our papers.

307
00:17:49,093 --> 00:17:52,113
And the API for shared bike is

00:17:52,382 --> 00:17:54,067
actually quite easy to use.

309
00:17:54,167 --> 00:17:59,094
And if you are interested in the availability of these kinds of bike,

310
00:18:00,713 --> 00:18:04,143
or how these bikes are arranged

311

00:18:04,243 --> 00:18:07,862
or moved by the company,

312
00:18:08,874 --> 00:18:12,134
or how the demand is different,

313
00:18:12,234 --> 00:18:14,790
then this is also quite useful.

314
00:18:14,957 --> 00:18:18,006
But then, from this API, as you can see later,

315
00:18:18,106 --> 00:18:22,624
when we actually tried it, we could see the location,

316
00:18:23,341 --> 00:18:25,459
the co-ordinates of the bike station,

317
00:18:25,559 --> 00:18:27,288
and also how many bikes are there

318
00:18:27,388 --> 00:18:29,596
or how many spaces are there,

319
00:18:31,255 --> 00:18:33,683
instead of other trip information

320
00:18:34,044 --> 00:18:37,003
from the file that you can download as a data dump.

321
00:18:39,442 --> 00:18:42,631
I find that it's also an interesting point

322
00:18:42,731 --> 00:18:45,629
if you are interested in bike sharing.

323
00:18:46,896 --> 00:18:51,674
If we look at this from a different point of view.

324
00:18:51,774 --> 00:18:56,043
Like, okay, this is in Edinburgh.

325
00:18:57,820 --> 00:19:01,040
You can see that you can download the trip data.

326
00:19:01,482 --> 00:19:06,386
And this is what I was referring to as a data dump.

327
00:19:07,700 --> 00:19:10,039
You can see you have all this information.

328
00:19:10,139 --> 00:19:12,168
Like stop and start station,

329
00:19:12,575 --> 00:19:13,853
description,

330
00:19:14,053 --> 00:19:17,760
co-ordinates, and the time, and so on.

331

00:19:18,190 --> 00:19:21,710

So, you have very detailed information for each trip.

332
00:19:22,141 --> 00:19:25,259
So, if you go on this data,

333
00:19:25,359 --> 00:19:27,597
that's what you get, and then you also get

334
00:19:27,697 --> 00:19:31,721
real-time data about the station's availability

335
00:19:31,821 --> 00:19:33,430
that I was referring to.

336
00:19:34,036 --> 00:19:39,522
But then, if you click on some of the US bike share data,

337

00:19:39,622 --> 00:19:41,942
I think it's also quite interesting because

338
00:19:43,204 --> 00:19:44,852
it looks very similar.

00:19:44,952 --> 00:19:46,997
But then, what strikes me is that

340
00:19:47,080 --> 00:19:51,846
they usually provide more information.

341
00:19:51,946 --> 00:19:54,235
I guess this is partly due to

342
00:19:55,233 --> 00:19:56,412
GDPR.

343
00:19:56,512 --> 00:20:00,580
That's my guess. I haven't really looked into it.

344
00:20:00,700 --> 00:20:04,069
But then, for the ones outside Europe,

345
00:20:04,169 --> 00:20:08,148
you usually get something more detailed.

346
00:20:08,248 --> 00:20:11,186
Such as the user type, even the birth year

347
00:20:11,286 --> 00:20:13,255
and the gender of the user.

348
00:20:14,743 --> 00:20:18,428
So, it depends on what you need in your research.

349
00:20:20,088 --> 00:20:23,055
That's a point that is worth noting.

350
00:20:24,533 --> 00:20:26,603
So, public transport.

351
00:20:27,044 --> 00:20:30,271
It's actually, for me, a bit painful

352
00:20:30,371 --> 00:20:34,309
because it's not very easy to obtain data.

353
00:20:34,409 --> 00:20:39,425
It's mostly not shared amongst the public.

354
00:20:42,101 --> 00:20:46,689
And most of the time, you will need to obtain them directly from the company.

355

00:20:46,789 --> 00:20:49,278
And then, as you can see,

356
00:20:49,378 --> 00:20:56,938
if they are not in a working relationship with

357
00:20:57,038 --> 00:20:58,606
you as a researcher

358

00:20:58,706 --> 00:21:02,824
or if you are not a consultant working for them,

359
00:21:02,924 --> 00:21:06,259
then it's not very easy to get sensitive information.

360
00:21:06,359 --> 00:21:08,745
But then, one thing that is open, at least, is

361

00:21:08,845 --> 00:21:12,169
the timetable or even, most of the time,

362
00:21:14,996 --> 00:21:21,123
they will share the real-time location of their vehicles.

363
00:21:21,223 --> 00:21:23,001
So, that's also possible.

364
00:21:24,284 --> 00:21:27,291
And for the prices of their fares,

365

00:21:27,589 --> 00:21:30,257
it's a bit easier because

366
00:21:30,357 --> 00:21:34,595
you can basically scrape them directly from the web.

367
00:21:34,976 --> 00:21:38,914
Or in the case of rail here,

368

00:21:39,014 --> 00:21:40,202
Rail Delivery Group,

369
00:21:40,302 --> 00:21:44,790
you can also register and get this information from them.

00:21:45,289 --> 00:21:49,729
So, I think this is the most constrained area

371
00:21:49,829 --> 00:21:53,463
in terms of getting data that is available to the public.

372
00:21:53,993 --> 00:21:56,241
We don't know that much about them.

373
00:21:56,926 --> 00:22:00,676
Especially in this country, with the market structure of

374
00:22:01,244 --> 00:22:02,652
the operators.

375
00:22:02,752 --> 00:22:07,641
That's pretty unfortunate because it's a big missing piece of the puzzle,

376
00:22:07,791 --> 00:22:08,860
I would say.

377
00:22:09,499 --> 00:22:12,298
Someone said freight data is even more constrained.

378
00:22:12,604 --> 00:22:15,923
Yeah. Yeah, that's even more unfortunate.

379
00:22:19,101 --> 00:22:21,130
Okay. So, I'm just thinking that,

380
00:22:21,230 --> 00:22:24,139
okay, with Glasgow, with these kinds of data,

381
00:22:24,778 --> 00:22:26,575
if we put them all together,

382
00:22:26,675 --> 00:22:27,863
we have different modes.

383
00:22:27,963 --> 00:22:30,991
And, of course, it's not like a complete picture.

384
00:22:31,091 --> 00:22:37,056
But we have a much better picture if we gather them together

385
00:22:37,156 --> 00:22:39,795
and try to build

386

00:22:40,899 --> 00:22:43,789
models, including different modes.

387

00:22:44,487 --> 00:22:46,683
And for the mobile phone data,

388
00:22:47,552 --> 00:22:49,467
again, I highlighted it because

389

00:22:49,567 --> 00:22:53,385
UBDC, they are having this mobile phone data set.

390
00:22:54,256 --> 00:22:56,498
So, yeah, perhaps if you are interested,

391
00:22:56,598 --> 00:22:59,096
just check it out and apply to use some.

392
00:23:02,510 --> 00:23:05,850
I will move on to some of the applications.

393
00:23:06,237 --> 00:23:08,295

One thing that I've found about

394
00:23:09,043 --> 00:23:15,702
this type of data available to the public is

395
00:23:15,802 --> 00:23:21,110
this I found during times of lockdown.

396
00:23:21,498 --> 00:23:25,195
I read an article, I think it was in the Financial Times,

397
00:23:26,353 --> 00:23:28,132
or The Economist.

398
00:23:28,628 --> 00:23:31,249
Both of them did something pretty similar.

399
00:23:31,349 --> 00:23:34,006
They tried to compare the hotspots

400
00:23:34,106 --> 00:23:37,054
during lockdown and so on.

00:23:37,489 --> 00:23:40,448

It was very early in the lockdown,

402
00:23:40,548 --> 00:23:43,846
like, last year, in March or so.

403
00:23:44,992 --> 00:23:47,550
So, there is actually this...

404
00:23:47,948 --> 00:23:50,954
When you search for a place on Google,

405
00:23:51,621 --> 00:23:54,168
for example, this is Glasgow Botanic Gardens,

406
00:23:54,268 --> 00:23:57,219
which is like five minutes from where I am now,

407
00:23:57,461 --> 00:24:01,470
what you will get is you get some popular times

408
00:24:01,570 --> 00:24:09,052
and you see what times at this place are

409
00:24:09,152 --> 00:24:11,062
usually the busier times.

410
00:24:11,870 --> 00:24:17,293
And then, what I did is that I also found something pretty interesting,

411
00:24:17,393 --> 00:24:20,705
which is a GitHub repository,

412
00:24:21,072 --> 00:24:25,502
which I didn't write,

413
00:24:25,673 --> 00:24:31,213
that enabled us to download this data

414
00:24:31,313 --> 00:24:34,685
in real-time so we get an idea about

415
00:24:35,017 --> 00:24:38,600
how busy a certain location is.

416
00:24:38,700 --> 00:24:41,440
As long as you can get the location ID,

417
00:24:41,596 --> 00:24:43,046
the details are on the GitHub.

418
00:24:43,146 --> 00:24:44,827
It's the link here.

419
00:24:45,500 --> 00:24:46,690
I'll just press it.

420

00:24:47,450 --> 00:24:49,091
It's something that looks like this.

421
00:24:51,351 --> 00:24:53,792
So, as long as you can get...

422
00:24:54,680 --> 00:24:57,620
Again, you need this API key

423

00:24:58,420 --> 00:24:59,629
to set it up.

424
00:24:59,970 --> 00:25:01,879

But then, what happens is that,

425
00:25:01,979 --> 00:25:04,500
if you get the ID of the park,

426
00:25:05,662 --> 00:25:11,354
then you could do something that I was trying.

427
00:25:11,943 --> 00:25:14,724
I got a list of the IDs of some parks

428
00:25:14,824 --> 00:25:20,334
and I tried to compare them to see whether they became more popular

429
00:25:20,434 --> 00:25:22,400
during lockdown or not.

430
00:25:22,901 --> 00:25:25,692
And I find that this is actually quite interesting

431
00:25:26,083 --> 00:25:28,444
because you can see that, on the left,

00:25:28,600 --> 00:25:30,270
there is this one with...

433
00:25:30,340 --> 00:25:32,551
The blue bars actually represent,

434
00:25:34,101 --> 00:25:36,320
during normal times,

435
00:25:37,352 --> 00:25:39,772
how popular the park is.

436
00:25:39,872 --> 00:25:44,243
And then, the two lines represent the lockdown.

437
00:25:44,503 --> 00:25:49,562
So, you see that some parks are actually less popular,

438
00:25:49,662 --> 00:25:51,892
some of them are more popular

439
00:25:52,438 --> 00:25:53,746
during the lockdown.

440
00:25:53,846 --> 00:25:56,001
And then, when I look at...

441
00:25:56,101 --> 00:25:58,120
I don't know Glasgow that well.

442
00:25:58,220 --> 00:26:00,048
Actually, I wasn't here for that long.

443
00:26:00,148 --> 00:26:02,146
But then, the interesting thing is that...

444
00:26:14,822 --> 00:26:17,391
Where was my file?

445
00:26:18,400 --> 00:26:19,538
But then... Never mind.

446
00:26:20,230 --> 00:26:21,849
I was just talking about that.

447
00:26:22,896 --> 00:26:25,529
I could do that without showing that, actually.

448

00:26:26,111 --> 00:26:29,038
So, the parks, about the parks,

449
00:26:29,406 --> 00:26:31,265
which have this pattern

450
00:26:31,365 --> 00:26:34,063
where they become less popular during the lockdown.

451
00:26:34,163 --> 00:26:37,202
They are actually the city centre's smaller parks.

452
00:26:37,629 --> 00:26:40,716
One of the ones that is becoming more popular is

453
00:26:40,816 --> 00:26:46,145
actually in the peripheral area of the city.

454

00:26:46,455 --> 00:26:48,123
So, I found that to be quite interesting.

455
00:26:48,223 --> 00:26:51,931

Although, it seems to be a pretty trivial observation

456
00:26:52,109 --> 00:26:55,037
but then, yeah, you can see all sorts of things when you try to

457
00:26:55,675 --> 00:26:57,933
carry out this type of analysis.

458

00:26:58,033 --> 00:26:59,341
So, that's the first one.

459
00:27:00,267 --> 00:27:05,446
And then, this one we will also get into more detail with a bit later,

460
00:27:05,546 --> 00:27:09,215
although not exactly using the API of

461

00:27:09,315 --> 00:27:12,222
the SCOOT data in Glasgow,

462
00:27:13,341 --> 00:27:15,370
in the second half of the session

00:27:15,470 --> 00:27:16,838
where I try to...

464

00:27:17,047 --> 00:27:19,374
If you read the map carefully,

465
00:27:19,573 --> 00:27:23,273
you can see the green icons.

466
00:27:24,872 --> 00:27:25,950
This one, it says,

467
00:27:26,050 --> 00:27:28,578
"Check your mirrors when moving between lanes".

468
00:27:28,762 --> 00:27:31,421
So, this is actually a map

469
00:27:32,468 --> 00:27:34,107
showing all the...

470
00:27:34,786 --> 00:27:37,156
If you read it on the legend.

471
00:27:37,566 --> 00:27:41,525
This one shows the Variable Message System.

472
00:27:41,655 --> 00:27:42,835
The messages.

473
00:27:43,063 --> 00:27:45,572
Here, you also have, "Look once, look twice",

474
00:27:45,819 --> 00:27:47,618
"Think bike", and so on.

475
00:27:47,940 --> 00:27:49,758
And then, in the middle,

476
00:27:50,128 --> 00:27:54,916
the orange ones are actually about parking availability.

477
00:27:55,164 --> 00:28:00,671
And then, the blue ones are the count locations of

478
00:28:02,289 --> 00:28:03,346
traffic.

479

00:28:03,941 --> 00:28:05,229
So, these types of things,

480
00:28:05,776 --> 00:28:08,774
you could see that if we get hold of

481
00:28:08,874 --> 00:28:09,913
the real-time data,

482

00:28:10,013 --> 00:28:13,781
we can easily visualise them and download this data

483
00:28:13,881 --> 00:28:15,659
for research purposes.

484
00:28:16,869 --> 00:28:20,078
And the third one is actually about

485

00:28:20,973 --> 00:28:24,971
the paper I'm going to discuss

486
00:28:25,071 --> 00:28:27,978
and I'm trying to introduce it very briefly

487
00:28:28,605 --> 00:28:33,733
so that we could go through some of the steps later

488
00:28:33,833 --> 00:28:36,276
in the second part of the session.

489

00:28:37,317 --> 00:28:40,265
So, this paper is about examining

490
00:28:40,634 --> 00:28:43,851
the effects of a temporary subway closure

491
00:28:44,506 --> 00:28:47,428
on cycling in Glasgow.

492
00:28:48,548 --> 00:28:53,046
So, we used this bike sharing data from

493
00:28:53,231 --> 00:28:56,545
Nextbike which operates in Glasgow,

00:28:57,515 --> 00:29:03,342

and then what we want to evaluate is,

495

00:29:04,388 --> 00:29:09,857
there was a temporary closure of

496
00:29:10,594 --> 00:29:13,842
over one month in 2016

497
00:29:14,961 --> 00:29:16,779
for the whole subway system.

498
00:29:16,953 --> 00:29:19,191
So, that's quite amazing to me

499
00:29:19,291 --> 00:29:22,128
because I've rarely heard of anything like that.

500
00:29:22,845 --> 00:29:24,362
You close a whole system

501
00:29:26,603 --> 00:29:28,703
for a whole month

502
00:29:29,476 --> 00:29:33,314
for renovation and then upgrading and so on.

503
00:29:33,799 --> 00:29:37,067
And then, since the system is quite small

504
00:29:37,167 --> 00:29:40,525
and then the distances between the stations,

505
00:29:40,625 --> 00:29:45,023
the subway stations, are actually pretty short.

506
00:29:45,778 --> 00:29:48,326
So, I was thinking that, maybe,

507
00:29:49,454 --> 00:29:53,442
people will replace these subway trips

508
00:29:53,799 --> 00:29:55,916
with cycling trips.

509
00:29:56,134 --> 00:29:57,702
So, that's the idea.

510
00:29:57,802 --> 00:30:00,949
And then, that's why we evaluated

511
00:30:01,049 --> 00:30:02,846
using the bike sharing data.

512
00:30:04,677 --> 00:30:07,564
So, again, this is the same objective

513

00:30:07,664 --> 00:30:11,170
as I was saying about some of my previous work.

514
00:30:11,447 --> 00:30:14,173
To study how different modes interact

515
00:30:14,603 --> 00:30:19,511
when there is this disruption of the public transport mode,

516

00:30:19,869 --> 00:30:21,326
subway in this case.

517
00:30:21,426 --> 00:30:25,664

How will people react in terms of their cycling behaviour?

518
00:30:25,963 --> 00:30:27,202

That's the idea.

519
00:30:28,573 --> 00:30:31,040
So, very briefly then,

520
00:30:31,547 --> 00:30:34,524
we narrowed down the study period to here

521

00:30:34,624 --> 00:30:37,450
because you have this red segment

522
00:30:37,550 --> 00:30:42,737
which is the actual suspension from July to some time in August.

523

00:30:43,703 --> 00:30:50,044
And then, these phases are just the introduction of the bike stations,

524
00:30:50,831 --> 00:30:52,323
the number of bike stations

00:30:52,423 --> 00:30:57,280
that Nextbike are having

526
00:30:57,608 --> 00:30:58,719
during that time.

527

00:31:00,616 --> 00:31:02,754
I excluded some of it because

528

00:31:03,194 --> 00:31:06,563
the growing number of bike stations might have

529

00:31:07,032 --> 00:31:09,002
affected the results.

530

00:31:09,600 --> 00:31:11,650
So, that's the idea.

531
00:31:11,916 --> 00:31:15,094
We study a part within the month.

532
00:31:15,200 --> 00:31:17,009
And then, as I've said,

533
00:31:17,109 --> 00:31:19,818
the system is actually pretty small.

534
00:31:19,918 --> 00:31:22,026
So, this is just to show that.

535
00:31:23,415 --> 00:31:26,193
These stations are just...

536
00:31:26,931 --> 00:31:29,410
If you're not familiar with the system,

537
00:31:29,510 --> 00:31:32,959
I found it very amusing when I first came to Glasgow

538
00:31:33,059 --> 00:31:34,866
because it's just a circle

539
00:31:35,344 --> 00:31:39,421
and you go clockwise or you go anticlockwise.

540
00:31:40,374 --> 00:31:42,465
That's it.

You can never get lost.

541
00:31:42,592 --> 00:31:44,159
And it's very, very short.

542
00:31:44,490 --> 00:31:46,886
So, that is why I think that it is possible that

543
00:31:47,972 --> 00:31:51,278
it can be substituted with bike rides.

544
00:31:52,608 --> 00:31:54,566
So, what is this about?

545
00:31:54,666 --> 00:31:55,964
It's not super clear.

546
00:31:56,064 --> 00:31:59,763
But then, you can see the orange ones are

547
00:31:59,863 --> 00:32:01,007
the subway stations

00:32:01,107 --> 00:32:03,616 and then these little dots are

549
00:32:03,716 --> 00:32:05,354
the bike stations.

550
00:32:06,003 --> 00:32:08,491
So, the idea is that, of course,

551
00:32:08,591 --> 00:32:11,698
we try to compare the time

552
00:32:11,873 --> 00:32:15,374
during the suspension

553
00:32:15,474 --> 00:32:17,212 and after the suspension

554
00:32:18,240 --> 00:32:21,338
to before the suspension

555
00:32:21,438 --> 00:32:23,806
so you can see how behaviour changed.

556
00:32:24,100 --> 00:32:27,488
But then, that might be problematic

557
00:32:28,200 --> 00:32:31,518
because we do not make use of

558
00:32:34,057 --> 00:32:35,976
most of our information.

559
00:32:36,244 --> 00:32:38,363
In terms of bike rides,

560
00:32:38,611 --> 00:32:42,628
we know the starting stations, we know the ending stations,

561
00:32:42,728 --> 00:32:45,292
so we have more information than that.

562
00:32:45,392 --> 00:32:47,969
So, what we have done is that

563
00:32:48,069 --> 00:32:50,397
we draw this buffer area

00:32:50,725 --> 00:32:52,905
where it's like a catchment area,

565
00:32:53,283 --> 00:32:55,120
where we think that, okay,

566
00:32:55,220 --> 00:33:00,974
if these bike stations are inside this treatment area,

567
00:33:01,074 --> 00:33:02,442
this catchment area,

568
00:33:02,620 --> 00:33:07,258
then we will call these bike stations

569
00:33:07,358 --> 00:33:09,056
the treatment stations.

570
00:33:09,284 --> 00:33:11,792
The other ones are the control stations.

571
00:33:11,892 --> 00:33:15,736

Like, these ones that are very far away from the subway system,

572
00:33:15,836 --> 00:33:17,134
the subway stations.

573
00:33:17,522 --> 00:33:20,660
So, the idea is that

574
00:33:20,760 --> 00:33:25,046
these stations, the trips of them are affected by

575
00:33:25,146 --> 00:33:27,954
the subway suspension, whilst these are not.

576
00:33:28,107 --> 00:33:30,865
So, we get another comparison,

577
00:33:31,410 --> 00:33:33,630
instead of only over time.

578
00:33:33,730 --> 00:33:36,998
We compare the suspension and without the suspension.

00:33:37,098 --> 00:33:38,355
So, that's the idea.

580
00:33:39,887 --> 00:33:43,335
So, yeah, of course, it relates to

581

00:33:43,435 --> 00:33:46,032
some of the existing studies.

582
00:33:46,134 --> 00:33:49,581
But then, again, I will not go into detail about this.

583
00:33:49,909 --> 00:33:54,004
It's just that, if you are already familiar with the terms,

584
00:33:54,541 --> 00:33:57,040
then you will know this is only about

585
00:33:57,603 --> 00:34:00,337
the interactions between the different modes.

586
00:34:00,611 --> 00:34:03,637
So, to put it very simply,

587
00:34:03,737 --> 00:34:08,460
it's just that now we are suspending the service of the subway.

588
00:34:08,560 --> 00:34:11,973
That means, you can think about it

589
00:34:12,073 --> 00:34:14,436
as an increase in the full cost of

590
00:34:14,536 --> 00:34:15,969
taking a subway trip.

591
00:34:17,191 --> 00:34:19,966
And then, with this change,

592
00:34:20,635 --> 00:34:23,739
how would it affect the quantity of trips

593
00:34:23,923 --> 00:34:25,627
in bike sharing.

594
00:34:25,971 --> 00:34:26,975
So, that's the idea.

595

00:34:27,075 --> 00:34:30,839
And then, if we put together these types of measures,

596
00:34:30,939 --> 00:34:35,251
then we can compare these with different studies

597
00:34:35,351 --> 00:34:37,055
that are doing similar things.

598

00:34:37,254 --> 00:34:38,285
That's the idea.

599
00:34:39,400 --> 00:34:42,223
And then, sometimes, if you go into the literature,

600
00:34:42,628 --> 00:34:46,302
it's not a new thing that people keep wanting to

601
00:34:48,177 --> 00:34:50,640
find out about the substitutability of, or

602
00:34:50,740 --> 00:34:53,595
complementarity of trips.

603
00:34:53,854 --> 00:34:57,757
Like, they study Uber

604
00:34:57,951 --> 00:35:01,347
as a complement or as a substitute of

605
00:35:01,900 --> 00:35:03,012
other trips.

606
00:35:03,212 --> 00:35:07,266
And also, it is possible when you look at it

607
00:35:07,529 --> 00:35:10,092
about rail or bus and so on.

608
00:35:11,000 --> 00:35:13,913
Because if you see bike sharing

609
00:35:14,013 --> 00:35:17,265
as a substitute, that means it replaces the trip.

610

00:35:17,588 --> 00:35:19,531
But then, if it is as a complement,

611
00:35:19,631 --> 00:35:23,284
then it is like the second case here

612
00:35:23,566 --> 00:35:27,459
where it is a first-mile last-mile facilitator,

613
00:35:27,650 --> 00:35:32,687
which means you ride the bike to, let's say, the rail station

614
00:35:32,787 --> 00:35:34,760
and then you take a rail trip.

615
00:35:35,560 --> 00:35:37,183
So, that's the idea.

616
00:35:37,274 --> 00:35:38,907
And then, of course,

617
00:35:39,410 --> 00:35:42,253
this may look a bit intimidating

618
00:35:43,560 --> 00:35:45,494
if you are not used to this,

619
00:35:45,656 --> 00:35:47,779
but then, the idea is, as I've said,

620
00:35:47,879 --> 00:35:50,193
that you're making two comparisons.

621
00:35:50,293 --> 00:35:52,507
One is between the time periods

622
00:35:52,607 --> 00:35:56,240
when the suspension is there,

623
00:35:56,882 --> 00:36:01,488
and since we would want to see whether people are coming back to,

624
00:36:01,697 --> 00:36:04,029
again, the...

625
00:36:05,300 --> 00:36:09,793
Let's say, with the suspension,
they want to ride the bikes

626
00:36:10,555 --> 00:36:14,260
and afterwards, do they still want to keep on riding bikes?

627
00:36:14,360 --> 00:36:19,352
Or when the subway is back, they will switch right back to

628
00:36:19,452 --> 00:36:21,095
riding on the subway,

629
00:36:21,195 --> 00:36:23,321
So, that's the idea. So, that's why there is

630
00:36:23,484 --> 00:36:26,523
the post-suspension period also.

631

00:36:27,173 --> 00:36:29,755
And then, another comparison would be

632
00:36:29,855 --> 00:36:32,638
the treatment station and the control station,

00:36:33,010 --> 00:36:34,993
the bike stations that I was talking about.

634

00:36:35,194 --> 00:36:36,706
So, when you do the analysis,

635
00:36:36,806 --> 00:36:39,796
you create different variables and so on.

636
00:36:40,585 --> 00:36:41,887
I won't go into details.

637
00:36:43,969 --> 00:36:47,242
If you followed the study, then you would know that

638
00:36:47,792 --> 00:36:50,302
after some basic cleaning of the data,

639
00:36:50,402 --> 00:36:53,255
you would want to cut some of the trips that are

640
00:36:53,605 --> 00:36:56,607
perhaps way too long to be covered

641
00:36:57,007 --> 00:37:00,229
because we are talking about replacing subway trips

642
00:37:00,329 --> 00:37:04,068
so it won't make sense if they are riding bikes for five hours.

643
00:37:04,168 --> 00:37:07,881
Then I can't really claim that it is a commuting trip.

644
00:37:07,981 --> 00:37:10,193
So, that's why some of the trips are removed

645
00:37:10,293 --> 00:37:13,585
and you can see that the percentage is not that much

646
00:37:13,685 --> 00:37:15,527
if you draw the cut-off

647
00:37:16,127 --> 00:37:20,670
around 150 minutes or something like that.

648
00:37:20,982 --> 00:37:25,324
That's pretty useful in looking at

649

00:37:25,424 --> 00:37:26,916
the whole picture

650
00:37:27,016 --> 00:37:30,877
and deciding where you want to make the cut-off.

651
00:37:31,818 --> 00:37:33,510
And then, also you have the...

652
00:37:34,300 --> 00:37:37,888
This is a diagram for the justification of

653
00:37:37,988 --> 00:37:41,360
using this type of model where I have the treatment

654
00:37:41,460 --> 00:37:43,052
and the control and so on.

655

00:37:43,351 --> 00:37:44,592
You can see that,

656
00:37:45,233 --> 00:37:50,505
visually, the treatment group and the control group do behave

657
00:37:50,605 --> 00:37:53,863
quite differently during the suspension period.

658
00:37:53,974 --> 00:37:59,699
So, I think that's quite strong visual evidence of that.

659
00:38:00,908 --> 00:38:04,482
So, the hypothesis, to say it simply is that

660
00:38:05,543 --> 00:38:10,790
since Glasgow subway station is in a dense city area, we would expect that

661
00:38:10,990 --> 00:38:14,736
these two modes, the bike sharing mode and the subway,

662
00:38:14,836 --> 00:38:16,654
would be substitutes.

663
00:38:16,802 --> 00:38:21,630
So, when you evaluate it and you estimate the model,

00:38:21,829 --> 00:38:24,485
the coefficient would be positive,

665
00:38:24,585 --> 00:38:27,333
the representing coefficient of interest.

666
00:38:27,813 --> 00:38:30,332
So, yeah, I wouldn't go back to the notation

667
00:38:30,432 --> 00:38:33,661
but then the findings show us that, actually,

668
00:38:33,839 --> 00:38:37,019
despite the system being pretty small,

669
00:38:37,119 --> 00:38:42,277
we really get more incoming and more outgoing bike trips

670
00:38:43,316 --> 00:38:45,175
when compared to the control group

671
00:38:45,275 --> 00:38:49,543
and also when compared to the other times that

672
00:38:50,299 --> 00:38:52,598
were without a suspension.

673
00:38:53,089 --> 00:38:55,989
So, that kind of

674
00:38:56,467 --> 00:38:59,435
strengthens our argument for

675
00:38:59,612 --> 00:39:04,163 our initial anticipation for the results.

676
00:39:05,079 --> 00:39:08,274
And then, although the number doesn't look too large,

677
00:39:08,374 --> 00:39:11,282
it looks like, okay, it's not a large number of trips,

678
00:39:11,382 --> 00:39:15,146
but then the system, both the subway system

679
00:39:15,240 --> 00:39:18,558
and the bike sharing system are not that big

680
00:39:19,045 --> 00:39:22,860
so it already represents around a 20% increase

681
00:39:22,960 --> 00:39:24,269
when you compare it.

682
00:39:24,478 --> 00:39:26,532
So, it's actually quite big.

683
00:39:27,471 --> 00:39:29,268
But then, of course, some of them,

684
00:39:29,497 --> 00:39:32,546
after the resumption of the subway service,

685
00:39:32,646 --> 00:39:36,192
they disappear again and they go back to

686
00:39:37,861 --> 00:39:38,969
riding the subway.

687
00:39:39,515 --> 00:39:42,216

So, after this,

688
00:39:42,316 --> 00:39:43,864
then we will see that,

689
00:39:44,213 --> 00:39:46,170
with these findings,

690
00:39:46,987 --> 00:39:48,154
if we converted...

691
00:39:48,328 --> 00:39:49,805
If you remember that earlier

692
00:39:49,905 --> 00:39:52,669
I brought up this term, diversion factor,

693
00:39:53,308 --> 00:39:58,846
it's just that when we have one fewer subway trip,

694
00:39:58,946 --> 00:40:01,724
like, people are shifting away from the subway,

695

00:40:01,824 --> 00:40:06,222
how many of them ended up riding a shared bike?

696
00:40:06,405 --> 00:40:08,633
It would be very, very small.

697
00:40:08,733 --> 00:40:13,890
Less than 0.05, which is the suggested value

698
00:40:13,990 --> 00:40:15,707
in some of the literature.

699
00:40:15,874 --> 00:40:19,095
But then, of course, this could be due to many reasons,

700

00:40:19,195 --> 00:40:23,401
that we found a much smaller value than this.

701
00:40:24,012 --> 00:40:28,903
So, I think this will end the first half

702
00:40:29,003 --> 00:40:32,491
and then the second half, we will get more hands on with

703
00:40:33,800 --> 00:40:38,258
trying to obtain some of the data

704
00:40:38,358 --> 00:40:40,455
and do something with it.

705
00:40:40,802 --> 00:40:42,336
In the second half.

706
00:40:42,436 --> 00:40:45,282
And then, I will also try to show

707
00:40:46,022 --> 00:40:48,088
how we start from there

708
00:40:48,188 --> 00:40:51,625
and then what could be done potentially

709
00:40:51,725 --> 00:40:54,551
with the data set to create something that is

710
00:40:54,730 --> 00:40:58,188
pretty similar to what I have just shown you.

711
00:40:58,989 --> 00:41:04,376
Although, I couldn't really use the Nextbike trip data because

712
00:41:04,476 --> 00:41:06,672
it's obtained from the company

713
00:41:06,772 --> 00:41:10,175
and it's not on their website right now.

714

00:41:11,212 --> 00:41:13,800
But then, we would be using

715
00:41:13,900 --> 00:41:16,635
something that is freely available

716
00:41:18,220 --> 00:41:20,596
in the session.

717

00:41:21,016 --> 00:41:22,683
So, this is it.

718
00:41:23,192 --> 00:41:26,857

And yeah, we will come back to the second half.

719
00:41:26,957 --> 00:41:29,975
But then, do I have to...

720
00:41:30,831 --> 00:41:32,590
Shall I answer something?

721
00:41:32,960 --> 00:41:34,736
Some questions.

722
00:41:35,826 --> 00:41:38,603
So, thank you, thank you for your talk.

723
00:41:38,975 --> 00:41:41,344
I think the very first question,

724
00:41:41,444 --> 00:41:44,786
which is not a question, rather a comment, was

725
00:41:44,886 --> 00:41:50,484
about Norway's system for public transport

00:41:50,584 --> 00:41:52,172
public information portal.

727
00:41:52,518 --> 00:41:55,375

- It's compulsory, it's cool.
- Which I think is very...

728
00:41:56,696 --> 00:41:57,773
Yeah, it's...

729
00:41:58,281 --> 00:42:01,768
So, in Norway,
there's compulsory sharing of

730
00:42:01,868 --> 00:42:06,156
the information of every stop and timetable for public transport.

731
00:42:06,256 --> 00:42:07,505
That's pretty cool.

732
00:42:07,605 --> 00:42:11,234
I think that, if I understand correctly,

733
00:42:13,309 --> 00:42:16,607
we are also going towards that direction.

734
00:42:16,707 --> 00:42:18,194
But we are not there yet.

735
00:42:18,585 --> 00:42:20,232
From what I understand.

736
00:42:21,444 --> 00:42:25,123
Yeah.
I would encourage everybody to look

737
00:42:25,223 --> 00:42:29,607
in the chat room, there is a useful link

738
00:42:29,707 --> 00:42:32,485
pointing to English development pages,

739
00:42:32,954 --> 00:42:34,108
if anybody is interested.

740
00:42:34,208 --> 00:42:37,003
So, public information portal for Norway,

741
00:42:37,770 --> 00:42:39,507
which is based on open data.

742
00:42:40,510 --> 00:42:42,631
Right. Let's move to the other questions.

743
00:42:43,916 --> 00:42:45,176
A question from Alan.

744
00:42:45,276 --> 00:42:47,923
How are you accounting for the other counterfactuals

745
00:42:48,023 --> 00:42:49,719
which have affected the treatment group?

746
00:42:53,128 --> 00:42:55,834
I think that we... Yeah, there are,

747
00:42:55,934 --> 00:42:58,033
of course, there are a lot of things

748
00:42:58,133 --> 00:43:00,852
that we couldn't really take into account.

749

00:43:00,952 --> 00:43:02,970
Then, the model we used.

750
00:43:03,886 --> 00:43:05,414
First thing, it was,

751
00:43:05,983 --> 00:43:10,072
we tried to take in the differences of stations

752
00:43:10,172 --> 00:43:14,051
in terms of using the fixed effects,

753
00:43:14,151 --> 00:43:15,310
that's the first thing,

754
00:43:15,988 --> 00:43:17,246
for different stations.

755
00:43:17,563 --> 00:43:19,835
And also,

756

00:43:19,935 --> 00:43:22,507
we included the weather data

757
00:43:22,607 --> 00:43:24,975
and then some other variables.

758
00:43:28,071 --> 00:43:31,500
And at the same time, of course it won't be perfect

759
00:43:31,600 --> 00:43:33,649
but we tried to make sure that,

760
00:43:33,749 --> 00:43:36,638
at the same time, there were no particular things that were

761
00:43:36,795 --> 00:43:40,584
particularly affecting the treatment group only.

762
00:43:42,553 --> 00:43:46,902
So, I think that's probably a simplification

763
00:43:47,002 --> 00:43:50,148
but that was the best that we could do

00:43:51,036 --> 00:43:55,675
from that simple model and the information that we had.

765
00:43:56,185 --> 00:43:58,303
So, it was a panel fixed effect

766
00:43:58,850 --> 00:44:01,078
and also, the other co-variants

767
00:44:01,178 --> 00:44:04,986
and trying to take out the period,

768
00:44:05,434 --> 00:44:09,293
as I have shown,

769
00:44:09,393 --> 00:44:11,661
the diagram with different phases.

770
00:44:11,759 --> 00:44:13,877
So, we tried to identify,

771
00:44:14,176 --> 00:44:16,243
we tried to cut out the time period

772
00:44:16,343 --> 00:44:19,260
where there were a lot of things happening with stations

773
00:44:19,839 --> 00:44:23,177
because there had been an increase in the number of stations.

774
00:44:23,367 --> 00:44:26,560
So, that was what we were trying to do.

775
00:44:27,299 --> 00:44:31,528
I hope that answers the question, partly at least.

776
00:44:32,459 --> 00:44:36,066
Okay.
Sharing the presentation as a PDF?

777
00:44:37,163 --> 00:44:38,332
Yes, I will.

778

00:44:38,670 --> 00:44:42,808
Actually, the scripts that we are going to use

779
00:44:42,908 --> 00:44:45,446
and the presentation will be shared.

780
00:44:46,031 --> 00:44:48,118
But I'm not sure if it will be on my personal GitHub

781
00:44:48,218 --> 00:44:50,964
or the Urban Big Data Centre's GitHub.

782

00:44:51,064 --> 00:44:53,102
I will try to find it out.

783
00:44:53,241 --> 00:44:56,189
And then, when we share this recording,

784
00:44:56,289 --> 00:44:58,266
it will also be available.

785

00:44:59,654 --> 00:45:01,643
Can I just quickly jump in with a comment?

786
00:45:01,990 --> 00:45:03,680
In a previous session, I think,

00:45:03,957 --> 00:45:09,358

every registered participant received a link to a recording

788
00:45:09,458 --> 00:45:11,132
and supporting materials at the very end.

789
00:45:11,232 --> 00:45:12,649

- So, I think it's...
- Oh, I see.

790
00:45:13,224 --> 00:45:14,773

- That is cool.
- This time as well.

791
00:45:15,161 --> 00:45:17,011
That is cool. I haven't uploaded it yet

792
00:45:17,111 --> 00:45:20,699
but I will tidy it up after today.

793

00:45:23,734 --> 00:45:25,086
So, just to answer the question.

794
00:45:25,296 --> 00:45:27,534

It will be shared in some form.

795
00:45:27,720 --> 00:45:30,737

- Yeah.
- To registered participants.

796
00:45:30,987 --> 00:45:32,016
Thank you.

797
00:45:35,120 --> 00:45:39,378
If you want to follow along for some of these apps,

798
00:45:39,745 --> 00:45:40,842
I'm trying to...

799
00:45:41,081 --> 00:45:44,467
Do you see my screen with RStudio?

800
00:45:44,729 --> 00:45:45,744
Yes.

801
00:45:46,023 --> 00:45:47,182
Brilliant.

802
00:45:47,322 --> 00:45:53,701
So, I think that the best way is that...

803
00:45:55,480 --> 00:45:57,475
Some of these scripts, of course,

804
00:45:58,593 --> 00:46:01,000
because you don't have the script with you,

805
00:46:01,100 --> 00:46:02,769
I haven't shared it yet.

806
00:46:02,957 --> 00:46:06,770
So, it would be unreasonable to ask you to

807
00:46:06,870 --> 00:46:11,760
follow it, unless you type in a super speedy way.

808
00:46:11,958 --> 00:46:16,586
But then, I think if you want to follow along,

809
00:46:16,686 --> 00:46:20,285
for some of the steps, I will share

810

00:46:20,385 --> 00:46:24,403
the particular command in the chat box

811
00:46:24,941 --> 00:46:29,979
so that we could try running it for some parts.

812
00:46:30,147 --> 00:46:34,872
But then, this first part, I would not expect that

813

00:46:34,972 --> 00:46:38,240
because it's a bit long and you can try it later.

814
00:46:38,628 --> 00:46:41,436
I guess. Because this part is

815
00:46:41,536 --> 00:46:46,335
actually using the API for Glasgow City Council

816

00:46:49,313 --> 00:46:52,982
on the information that they share,

817
00:46:53,082 --> 00:46:57,009
as you can see here very briefly.

818
00:46:57,397 --> 00:46:59,514
It would be about

819
00:47:03,637 --> 00:47:06,944
the movement, the traffic count,

820
00:47:07,478 --> 00:47:08,726
the carparks,

821
00:47:08,826 --> 00:47:11,814
the events that might be happening on the highways,

822
00:47:11,914 --> 00:47:13,271
the locations,

823
00:47:13,371 --> 00:47:18,628
and the Variable Message System that I was talking about.

824
00:47:18,914 --> 00:47:22,312
So, you will need an API key

825

00:47:22,412 --> 00:47:29,180
and then, we provided a link to access that,

826

00:47:29,392 --> 00:47:30,819
to sign up for that

827

00:47:32,156 --> 00:47:33,413
for this session.

828
00:47:33,513 --> 00:47:38,558
But then, I believe the website was dead for quite some time.

829
00:47:39,753 --> 00:47:42,131
I don't know if it was my problem or not.

830
00:47:42,231 --> 00:47:46,810
If any of you could actually get a key or could actually sign up.

831
00:47:47,047 --> 00:47:49,435
So, it doesn't really matter. I will still share the script

832
00:47:49,535 --> 00:47:53,830
and you could try it later, after you are able to get an account.

833
00:47:53,930 --> 00:47:56,918
But we could see what it looks like.

834
00:47:57,966 --> 00:48:00,974
So, the very first thing is

835
00:48:01,074 --> 00:48:05,511
that there would be some libraries that we might need

836
00:48:05,611 --> 00:48:06,859
most of the time.

837
00:48:07,549 --> 00:48:12,466
Some libraries like jsonlite and then something for tidying the tables.

838
00:48:12,566 --> 00:48:16,633
And then, one particular library I would be using would be

839
00:48:17,051 --> 00:48:22,556
Leaflet, just to show some locations information

840
00:48:22,753 --> 00:48:24,531
and then it looks pretty nice.

841

00:48:24,631 --> 00:48:28,719
The HTML tools are also related to that.

842
00:48:29,679 --> 00:48:32,116
And then, yeah, you could sign up later.

843
00:48:35,963 --> 00:48:40,323
You would be able to, if you got access to the site,

844

00:48:40,423 --> 00:48:45,161
you would be able to sign up for a standard account,

845
00:48:45,261 --> 00:48:47,408
or something like, start an account.

846
00:48:48,055 --> 00:48:53,915
And then, if you would like a lot, of course,

847

00:48:54,015 --> 00:48:55,112
over time,

848
00:48:55,212 --> 00:49:00,631
like, making a request every minute or whatever

849
00:49:00,814 --> 00:49:02,395
that you would like,

850
00:49:02,612 --> 00:49:04,510
then you would need a business account

851

00:49:04,610 --> 00:49:07,397
but then, yeah, you could do that when you sign up.

852
00:49:08,167 --> 00:49:12,235
And then, there are a few URLs.

853
00:49:12,335 --> 00:49:17,251
And the key here is actually just entering the key.

854

00:49:18,066 --> 00:49:20,843
I didn't show my key, I have already entered it.

855
00:49:22,129 --> 00:49:27,026
So, this URL is provided from their website because

00:49:27,284 --> 00:49:29,381
it's, from what I know,

857
00:49:31,029 --> 00:49:33,015
it might not be accessible right now.

858
00:49:33,115 --> 00:49:35,122
So, I would just not show it.

859
00:49:35,263 --> 00:49:37,670
But then, the flow is a bit like this.

860
00:49:38,039 --> 00:49:40,399
You get the key, you get the URL,

861
00:49:40,618 --> 00:49:45,215
and then you request that using this command

862
00:49:45,315 --> 00:49:48,306
by placing the key if it is necessary.

863
00:49:49,362 --> 00:49:51,521
And then, the next part would be

864
00:49:51,621 --> 00:49:55,265
more problematic because you will want to see,

865
00:49:55,597 --> 00:49:57,821
after what you have requested,

866
00:49:58,948 --> 00:50:02,647
how it looks and whether you can just use it directly

867
00:50:02,833 --> 00:50:07,098
for your, like, will it look like a very nice data set

868
00:50:07,198 --> 00:50:08,906
that you can use right away.

869
00:50:09,178 --> 00:50:13,207
So, yeah, it works, which is a good sign.

870
00:50:14,497 --> 00:50:15,824
So, from this request,

871
00:50:15,924 --> 00:50:19,074
we can see what we actually have.

872

00:50:19,663 --> 00:50:22,782
And then, if you look at it, then you can see...

873
00:50:22,882 --> 00:50:25,992
Okay, this doesn't look like what I was expecting.

874
00:50:26,243 --> 00:50:27,882
I was looking for traffic counts.

875

00:50:27,982 --> 00:50:30,861
And then, if you open it,

876
00:50:31,318 --> 00:50:35,738
there is some information about the whole schema.

877
00:50:36,174 --> 00:50:40,674
And then, you continue with it.

878

00:50:42,563 --> 00:50:45,435
Then you will start seeing the information

879
00:50:45,535 --> 00:50:46,713
that you would want.

880
00:50:46,893 --> 00:50:51,073
Because here, let's say this one is number one,

881
00:50:51,173 --> 00:50:56,842
and then you will start seeing the level of the traffic.

882
00:51:00,162 --> 00:51:03,001
Yeah, you see the traffic flow of

883
00:51:03,101 --> 00:51:05,500
that particular location.

884
00:51:05,770 --> 00:51:09,739
So, you can see that the site information is here.

885

00:51:09,839 --> 00:51:12,397
Each of them is a different site.

886
00:51:13,106 --> 00:51:15,511
So, this is not tidy at all

00:51:15,611 --> 00:51:19,529
and most of the time, when it comes to counts and locations,

888
00:51:19,966 --> 00:51:22,155
the counter information, the data,

889
00:51:22,469 --> 00:51:24,019
that you try to grab,

890
00:51:24,220 --> 00:51:27,339
there is no simple,

891
00:51:27,467 --> 00:51:29,307
as far as I know, most of the time,

892
00:51:29,407 --> 00:51:33,336
there are no simple commands that you can just use

893
00:51:33,845 --> 00:51:37,494
to tidy up this type of data,

894
00:51:37,594 --> 00:51:40,873
data frame that you get right away.

895
00:51:41,073 --> 00:51:45,462
So, of course, I would think that

896
00:51:46,891 --> 00:51:50,121
it would take too much time for us to do this

897
00:51:50,623 --> 00:51:52,412
like this here.

898
00:51:52,612 --> 00:51:55,170
But then, I guess the point would be

899
00:51:55,270 --> 00:51:56,838
that if you click it

900
00:51:56,938 --> 00:52:01,097
and you can see that there are different levels and layers.

901
00:52:04,116 --> 00:52:07,075
And then... Yeah, I will have to

902
00:52:07,275 --> 00:52:09,763
move this a little bit.

903

00:52:30,043 --> 00:52:32,071
So, that was the request.

904
00:52:32,171 --> 00:52:34,789
And then, we tidy it up.

905
00:52:34,974 --> 00:52:37,854
I did some of the following steps to tidy it up.

906

00:52:37,963 --> 00:52:42,032
And then, it looks a bit weird

907
00:52:42,132 --> 00:52:43,959
but then, the point is that

908
00:52:44,059 --> 00:52:47,088
I tried to get the movement information

909

00:52:47,188 --> 00:52:48,818
from those different layers

910
00:52:49,139 --> 00:52:55,757
and put it back into a data frame how I would like it to look.

911
00:52:55,964 --> 00:52:59,493
So, these are a bit annoying

912
00:52:59,593 --> 00:53:00,817
when you try to do it.

913

00:53:00,917 --> 00:53:04,455
But then, we will try another one later.

914
00:53:04,683 --> 00:53:08,144
But then, this is how it will look

915
00:53:08,244 --> 00:53:09,582
at the very beginning.

916

00:53:11,739 --> 00:53:15,359
So, we could see that this is just requested.

917
00:53:15,459 --> 00:53:18,237
So, if you click that open,

00:53:18,337 --> 00:53:23,116
you will see that the time is just now, not far from now.

919
00:53:23,705 --> 00:53:29,394
And then, if I run these,

920
00:53:34,302 --> 00:53:38,770
then I will be able to get a data frame called movement count,

921
00:53:38,870 --> 00:53:41,599
which is the camera

922
00:53:41,699 --> 00:53:44,237
and the number of the count,

923
00:53:45,137 --> 00:53:49,802
so that I could make use of it more easily.

924
00:53:50,012 --> 00:53:51,919
And then, let's say if....

925
00:53:52,452 --> 00:53:56,311
I will just try it with the parking data,

926
00:53:56,411 --> 00:53:58,166
doing almost the same thing.

927
00:53:58,266 --> 00:54:01,233
Requesting through the URL and then tidying it up.

928

00:54:03,355 --> 00:54:04,836
Okay. I run it.

929
00:54:06,065 --> 00:54:09,712
Then what I'm getting here is that...

930
00:54:10,919 --> 00:54:12,487
Okay. We'll try to open it

931

00:54:12,587 --> 00:54:15,865
and then we will see that there are

932
00:54:15,965 --> 00:54:17,973
the timestamps,

933
00:54:18,642 --> 00:54:24,070
and then you can see the parking locations,

934
00:54:24,777 --> 00:54:27,265
and also, whether there are

935
00:54:27,365 --> 00:54:31,405
enough spaces and how much of it is occupied.

936
00:54:32,169 --> 00:54:36,291

So, this sort of information is

937

00:54:36,859 --> 00:54:39,745
what we could get

938
00:54:41,022 --> 00:54:45,270
from this particular URL.

939
00:54:49,080 --> 00:54:51,157
It is a bit annoying because,

940

00:54:51,257 --> 00:54:54,251
I'm sorry, the bar keeps blocking me.

941

00:54:55,719 --> 00:54:57,348

We can move it.

942
00:54:58,819 --> 00:55:00,216
Yeah. Finally.

943
00:55:01,502 --> 00:55:04,381
So, the parking co-ordinates,

944
00:55:04,669 --> 00:55:05,816
they look like this.

945
00:55:05,916 --> 00:55:09,234
And then, there's the traffic events.

946
00:55:09,334 --> 00:55:12,192
And then, I could do similar things to it.

947

00:55:12,982 --> 00:55:16,134
And also, the Variable Message boards.

948
00:55:16,910 --> 00:55:19,627
And you can see that after you've requested it,

00:55:19,727 --> 00:55:24,256
it's also a bit of a mess if you try.

950
00:55:24,813 --> 00:55:26,331
This is the message board.

951
00:55:26,471 --> 00:55:31,381
And then, this is the thing that we have requested

952
00:55:31,481 --> 00:55:33,940
and we try to press into it.

953
00:55:34,340 --> 00:55:39,408
And then, we will see something, like,

954
00:55:43,008 --> 00:55:45,488
the information, the status,

955

00:55:46,566 --> 00:55:49,602
and then the message that is actually there.

956
00:55:50,942 --> 00:55:53,180
So, what we have to do is

957
00:55:53,280 --> 00:55:58,760
that we have to extract the useful information from this.

958
00:55:59,218 --> 00:56:01,896
And then, that's what we get.

959
00:56:02,096 --> 00:56:04,575
It would be after the steps.

960
00:56:05,947 --> 00:56:08,515
Because these are actually just columns.

961
00:56:08,728 --> 00:56:11,332
You go into one column and then you go into another column.

962
00:56:11,432 --> 00:56:14,059
So, I didn't go into great detail about this.

963
00:56:14,159 --> 00:56:16,087
And then, I renamed these columns

964
00:56:16,187 --> 00:56:18,413
so that it will look nicer.

965

00:56:18,513 --> 00:56:20,710
And then, the data frame, if we tidy it up,

966
00:56:20,810 --> 00:56:24,153
it will look like, okay, we have these five locations

967
00:56:24,253 --> 00:56:26,090
and then these are the times.

968
00:56:26,190 --> 00:56:30,622
And then, the message is just something like this.

969
00:56:30,722 --> 00:56:32,823
"Check your mirrors when moving".

970
00:56:33,455 --> 00:56:34,456
And so on.

971

00:56:34,556 --> 00:56:37,337
Sometimes there is more interesting information

972
00:56:37,437 --> 00:56:39,438
but not right now.

973
00:56:40,972 --> 00:56:43,199
And, of course, these message boards

974
00:56:43,299 --> 00:56:44,419
also have their location.

975
00:56:44,519 --> 00:56:46,919
And similarly, we could request this.

976
00:56:47,400 --> 00:56:51,430
So, what I was doing with this is...

977
00:56:52,602 --> 00:56:56,731
The next thing would be to combine these message boards

978
00:56:56,831 --> 00:56:59,618
with the location, because the message board data set

979
00:56:59,718 --> 00:57:01,538
and the location data set are

00:57:01,780 --> 00:57:05,141
in two different data frames right now.

981

00:57:05,321 --> 00:57:08,813
So, if we try to combine that,

982
00:57:09,385 --> 00:57:12,165
I have to rearrange a little bit

983
00:57:12,705 --> 00:57:17,479
because some of them, they have extra characters

984
00:57:17,579 --> 00:57:22,590
if you click into that particular name of the data frame.

985
00:57:22,860 --> 00:57:26,301
So, I remove some of them and I try to combine them.

986
00:57:26,441 --> 00:57:30,062
And then, in the end, what I aim to do is

987
00:57:30,162 --> 00:57:33,303
nothing too complicated.

988
00:57:33,403 --> 00:57:35,595
It's just that I was trying to

989
00:57:36,106 --> 00:57:38,937
put together these data sets

990
00:57:39,419 --> 00:57:43,420
and then place them into a nice map.

991
00:57:43,520 --> 00:57:49,313
So, I will make use of the Leaflet package now

992
00:57:49,874 --> 00:57:53,483
and then I add different markers,

993
00:57:54,415 --> 00:57:59,933
such as I supplied the location and what kind of label I am going to use.

994
00:58:01,555 --> 00:58:04,984
And then I save it as an HTML file.

995
00:58:05,084 --> 00:58:07,051
So, this is for the parking map

996
00:58:07,151 --> 00:58:08,612
and so on.

997
00:58:08,932 --> 00:58:12,322
And I try to choose different icons for that.

998
00:58:13,082 --> 00:58:18,374
So, I think the most interesting one that I'm going to show is

999
00:58:18,474 --> 00:58:22,302
the one where I included the different markers

1000
00:58:22,402 --> 00:58:23,560
on one map.

1001
00:58:23,878 --> 00:58:27,799
Like the one for the parking locations

1002
00:58:27,899 --> 00:58:30,974
and the one for the count of traffic

1003
00:58:31,233 --> 00:58:34,003
and also, the Variable Message Systems.

1004
00:58:34,842 --> 00:58:38,812
And it will look something like this.

1005
00:58:41,331 --> 00:58:42,969
So, you have something like,

1006

00:58:43,337 --> 00:58:45,766
okay, the messages are showing here.

1007
00:58:46,322 --> 00:58:50,961
And then, if you go around, if you move around.

1008
00:58:51,790 --> 00:58:53,388
This is way too slow.

1009

00:58:53,933 --> 00:58:58,172
You will see the count on the map

1010
00:58:59,590 --> 00:59:03,827
along the way. Or when you hover over the parking ones.

1011

00:59:04,563 --> 00:59:08,138
I've got a flag. I couldn't find a parking logo.

1012
00:59:08,378 --> 00:59:09,826
And then, you will see that

1013
00:59:10,447 --> 00:59:14,448
I am showing the message whether there would be enough space.

1014
00:59:14,792 --> 00:59:19,729
So, I think that could be something that would be

1015
00:59:19,829 --> 00:59:23,917
of interest if you want to combine them and show them all.

1016
00:59:24,124 --> 00:59:25,532
You find that too chaotic?

1017
00:59:25,760 --> 00:59:27,638
Then you could remove them.

1018
00:59:28,193 --> 00:59:31,500
You could overlay each one of them

1019
00:59:31,600 --> 00:59:33,939
or you could just remove these.

1020
00:59:34,239 --> 00:59:39,063
And this is done using the Leaflet package.

1021
00:59:42,974 --> 00:59:44,541
Then the next thing would be,

1022
00:59:44,641 --> 00:59:46,926
I think that we could try something

1023
00:59:47,375 --> 00:59:51,322
with this one on Brussels' traffic count.

1024
00:59:51,856 --> 00:59:55,123
So, let me go to that one.

1025
00:59:56,373 --> 01:00:01,640
This API, because it's open without a key.

1026
01:00:01,740 --> 01:00:05,538
So, I think if you have R with you,

1027

01:00:05,638 --> 01:00:07,536
you could just try it.

1028
01:00:08,616 --> 01:00:10,395
Let me share this.

1029
01:00:11,863 --> 01:00:13,731
Where's the chat box?

1030
01:00:27,304 --> 01:00:29,152
Okay. There you go.

1031
01:00:33,425 --> 01:00:35,545
So, if you go to this.

1032
01:00:43,981 --> 01:00:45,458
This is the site.

1033
01:00:45,658 --> 01:00:48,756
Then you should be able to see that

1034
01:00:48,935 --> 01:00:51,518
this is actually more complicated

1035
01:00:52,757 --> 01:00:56,853
than the one that we had for the Glasgow City Council

1036
01:00:57,685 --> 01:01:00,442
because of what they supplied.

1037

01:01:00,879 --> 01:01:04,019
We mainly have the vehicle count for that

1038
01:01:04,119 --> 01:01:07,901
and this one, we actually have way more information.

1039
01:01:08,900 --> 01:01:10,902
You can read it in detail later,

1040

01:01:11,002 --> 01:01:12,474
but then the point is that

1041
01:01:14,102 --> 01:01:17,353
you can have this kind of live data

01:01:17,453 --> 01:01:22,205
about the count and speed and even the occupancy of the road,

1043
01:01:22,652 --> 01:01:28,350
and the timestamps and how they get hold of these numbers.

1044
01:01:28,450 --> 01:01:33,431
So, if you look here, you get a link

1045
01:01:33,531 --> 01:01:36,121
with the livestream counts.

1046
01:01:36,302 --> 01:01:39,682
And also, this one, if you click on this one,

1047
01:01:39,782 --> 01:01:45,314
you would be able to download a CSV with the locations of the devices.

1048
01:01:45,512 --> 01:01:49,224
So, that would be useful if you want to put them on a map

1049
01:01:49,324 --> 01:01:52,905
and if you want to know the exact location of these devices.

1050
01:01:53,286 --> 01:01:56,296
So, let's click on this.

1051
01:01:56,547 --> 01:01:57,937
And then you see,

1052
01:01:59,126 --> 01:02:03,486
when you place a live request, it will mostly look like this

1053
01:02:03,607 --> 01:02:07,718
for a lot of the cases you will look into.

1054
01:02:08,016 --> 01:02:10,138
First of all, you get the request date.

1055
01:02:10,238 --> 01:02:12,208
This is updated.

1056
01:02:13,548 --> 01:02:17,568
They are in Brussels, so they are one hour faster.

1057
01:02:17,878 --> 01:02:20,958
And, of course, it's close to this time.

1058
01:02:21,058 --> 01:02:24,899
And then, you get the device

1059
01:02:25,659 --> 01:02:29,327
and you get it for one minute.

1060
01:02:29,854 --> 01:02:32,002
And you get the count.

1061
01:02:32,267 --> 01:02:34,708
And then the speed and the occupancy

1062
01:02:34,997 --> 01:02:36,125
and all that.

1063
01:02:36,225 --> 01:02:38,113
It's not only one minute you get.

1064

01:02:38,213 --> 01:02:41,891
I think you get five minutes, fifteen minutes, and so on.

1065
01:02:42,089 --> 01:02:44,479

But then, the main problem would be,

1066
01:02:44,579 --> 01:02:47,947
of course, to get this and tidy this up

1067
01:02:49,394 --> 01:02:51,681
in your script.

1068
01:02:53,430 --> 01:02:56,780
First things first, we just try some of this

1069
01:02:56,880 --> 01:03:01,198
and with the URL that we just had.

1070
01:03:02,131 --> 01:03:03,680
Which is this one.

1071
01:03:04,871 --> 01:03:09,278
You can either save this page and then import it to R

1072
01:03:09,378 --> 01:03:12,234
or you can copy this one.

1073

01:03:12,334 --> 01:03:15,480
I think I just shared that too.

1074
01:03:15,908 --> 01:03:17,898
Yeah, but I can do that again.

1075
01:03:21,083 --> 01:03:24,375
I think we can put this up, sorry.

1076
01:03:26,715 --> 01:03:30,482
Put this in R and try to import that.

1077
01:03:32,827 --> 01:03:35,858
Yeah, like, okay, we start from here.

1078
01:03:35,958 --> 01:03:38,892
URL. So, we enter this URL

1079
01:03:39,399 --> 01:03:41,848
and then we do this request.

1080
01:03:47,121 --> 01:03:49,040
If you have RStudio with you,

1081
01:03:49,140 --> 01:03:50,989
you could also try.

1082
01:03:51,089 --> 01:03:53,347
And then, if you run it,

1083
01:03:53,447 --> 01:03:59,996
then you will see that we have the whole request for Brussels.

1084
01:04:01,185 --> 01:04:03,673
This is the data that we are looking at

1085
01:04:03,773 --> 01:04:08,701
and you can see that's the device

1086
01:04:08,801 --> 01:04:11,981
and then the results involved with this device

1087
01:04:12,081 --> 01:04:17,510
and then you have this different type of data

1088
01:04:17,610 --> 01:04:18,629
that you get.

1089

01:04:19,236 --> 01:04:21,007
You have the count and so on.

1090
01:04:21,107 --> 01:04:23,237
There's none for this one.

1091
01:04:23,636 --> 01:04:26,566
Yeah,
Perhaps, again, another one.

1092
01:04:35,466 --> 01:04:38,434
Then you see this kind of information.

1093
01:04:38,534 --> 01:04:40,941
That's the type of thing you can extract.

1094
01:04:41,041 --> 01:04:43,339
Of course, then we will have to go through

1095
01:04:44,085 --> 01:04:49,596
the annoying steps of requesting them.

1096

01:04:49,995 --> 01:04:53,533
I didn't include them here because I will put them,

1097
01:04:55,013 --> 01:04:58,711
I would not want to go over them here

1098
01:04:58,811 --> 01:05:02,550
and I will include them later when I share the script.

1099
01:05:02,650 --> 01:05:04,398
But then, this is the idea.

1100
01:05:04,778 --> 01:05:06,626
And then, as I've said,

1101
01:05:06,726 --> 01:05:10,346
the location of the counter is actually a CSV file that

1102
01:05:10,446 --> 01:05:13,874
you could download from the page that I just shared.

1103
01:05:13,974 --> 01:05:16,524
Then, afterwards, I think the next step would be

1104
01:05:16,624 --> 01:05:18,876
to combine the counter location

1105
01:05:18,976 --> 01:05:20,299
and also the count.

1106
01:05:20,499 --> 01:05:23,180
And then you can do different things,

1107
01:05:23,658 --> 01:05:26,079
like putting it on a map or something like that.

1108
01:05:28,551 --> 01:05:31,103
Of course, that's the map.

1109
01:05:31,203 --> 01:05:35,109
But then, I didn't go into a lot of detail.

1110
01:05:44,059 --> 01:05:45,290
Where is it?

1111
01:05:49,245 --> 01:05:51,330
This is the Brussels map

1112

01:05:51,461 --> 01:05:55,302
where you can see these are the different counter devices

1113
01:05:55,402 --> 01:05:59,761
that I plotted from the previous CSV file.

1114
01:06:00,411 --> 01:06:03,271
So, you can show more information,

1115
01:06:03,371 --> 01:06:06,380
like the count, after you have combined the data sets.

1116
01:06:07,420 --> 01:06:11,057
Again, I will share this information,

1117
01:06:11,157 --> 01:06:13,206
this script, later.

1118
01:06:14,246 --> 01:06:16,855
But then, it would be interesting

1119
01:06:16,955 --> 01:06:22,253
if you really wanted to try to tackle the area of your interest

1120
01:06:22,353 --> 01:06:23,408
for traffic count.

1121

01:06:23,508 --> 01:06:26,687
You will have to try to do that on your own.

1122

01:06:26,906 --> 01:06:30,485
Because I found out that, sometimes, for different cities

1123
01:06:30,585 --> 01:06:31,905
or different countries

1124
01:06:32,137 --> 01:06:36,209
the way they share or structure the scripts would be

1125

01:06:36,309 --> 01:06:40,237
a bit different, and it's not entirely clear to me

1126
01:06:41,087 --> 01:06:44,136
if there's a more uniform way of doing it.

01:06:44,365 --> 01:06:48,670

But from what I've found also on GitHub and from other researchers,

1128
01:06:48,770 --> 01:06:54,509
they do it in this kind of way, one by one.

1129
01:06:54,609 --> 01:06:57,228
So, it's a bit annoying

1130
01:06:57,328 --> 01:06:59,257
but then you get what you want.

1131
01:06:59,357 --> 01:07:03,086
After you set it up, you can use it,

1132
01:07:03,186 --> 01:07:05,154
probably, for a longer time

1133
01:07:06,083 --> 01:07:08,732
so the effort will be worth it.

1134
01:07:09,572 --> 01:07:12,721
Actually, there's another example for Hull.

1135
01:07:13,126 --> 01:07:18,556
And if you check, this one also doesn't...

1136
01:07:19,215 --> 01:07:21,084
It's super small, sorry.

1137
01:07:22,109 --> 01:07:25,700
This one also doesn't require an API key,

1138
01:07:28,082 --> 01:07:32,297
so you could also try to play with this one.

1139
01:07:42,077 --> 01:07:46,933
You can see that if you don't want to deal with

1140
01:07:47,033 --> 01:07:50,200
all the messy files that I just showed you,

1141
01:07:50,300 --> 01:07:52,268
you can also download the CSV.

1142
01:07:52,368 --> 01:07:57,937
But then, you can see that it's one location by location

1143

01:07:58,037 --> 01:08:01,385
so you have a ton of files if you want a lot of them.

1144
01:08:02,895 --> 01:08:04,621
There are quite a lot of them.

1145
01:08:07,377 --> 01:08:09,801
And then, if you scroll down,

1146
01:08:09,901 --> 01:08:14,061
then you can see that you go back to the original things.

1147
01:08:14,161 --> 01:08:18,329
scootdata.geojson file or .jsonfile.

1148
01:08:21,932 --> 01:08:24,971
Let's see if we can access this.

1149

01:08:28,551 --> 01:08:30,777
Then you get this URL.

1150
01:08:32,507 --> 01:08:37,115

And then you almost go back to something very similar that

1151
01:08:37,215 --> 01:08:39,534
you will have to read.

1152
01:08:46,543 --> 01:08:50,718
Okay. This is the one that I'm referring to.

1153

01:08:50,818 --> 01:08:52,194
It's a bit slow, sorry.

1154
01:08:55,656 --> 01:08:57,091
Why is it not moving?

1155
01:09:00,344 --> 01:09:02,584
Yeah, you go back to something like this.

1156
01:09:02,836 --> 01:09:05,095
So, again, I would say that

1157
01:09:05,305 --> 01:09:08,223
this is going to take some time.

1158

01:09:08,873 --> 01:09:12,293
And, yeah, I will share it later,

1159
01:09:12,393 --> 01:09:15,747
how to go fast through this because I don't think we have

1160
01:09:15,847 --> 01:09:17,815
enough time to do it right away.

1161
01:09:17,915 --> 01:09:20,203
But then, one thing that I would like to mention is that

1162
01:09:20,303 --> 01:09:22,932
these things are usually in real-time

1163
01:09:23,850 --> 01:09:29,289
and it's not much use if you just get the data at this point in time.

1164
01:09:29,389 --> 01:09:31,834
So, how do you want to use it?

1165
01:09:33,033 --> 01:09:37,049
I think that it would be quite interesting

1166
01:09:37,149 --> 01:09:38,957
if you want to try it.

1167
01:09:39,534 --> 01:09:44,800
You can connect through a PostgreSQL database

1168
01:09:44,900 --> 01:09:49,295
and then you save it every certain number of minutes

1169
01:09:49,395 --> 01:09:51,873
and then you build your database

1170
01:09:51,973 --> 01:09:53,962
will all this kind of information.

1171
01:09:54,062 --> 01:09:56,950
And then you can schedule your script

1172
01:09:57,050 --> 01:10:00,448
to be run in a certain time interval,

1173
01:10:00,734 --> 01:10:03,645
so that you can get this type of information.

1174

01:10:04,665 --> 01:10:07,503
So, yeah, this is what this part is doing.

1175
01:10:07,603 --> 01:10:12,894
And then, if we move on to some of the bike share data,

1176
01:10:12,994 --> 01:10:18,590
there are many lengths that some bike companies

1177
01:10:19,037 --> 01:10:21,917
that I have found over time.

1178
01:10:22,375 --> 01:10:25,952
And then, the thing about bike share is

1179
01:10:26,052 --> 01:10:31,039
that it's much nicer than what I've shown you about the traffic counters.

1180
01:10:31,300 --> 01:10:35,509
So, let's say for CitiBike.

1181
01:10:39,874 --> 01:10:43,572

Let's go to the site of CitiBike.

1182
01:10:49,542 --> 01:10:52,091
Why can't I click on the link?

1183
01:10:53,379 --> 01:10:54,748
It doesn't really matter.

1184
01:11:02,078 --> 01:11:04,316
CitiBike, here.

1185
01:11:17,267 --> 01:11:21,242
I think I have shown some of this in the previous presentation,

1186
01:11:21,342 --> 01:11:26,106
where you have all the trip data you can download as a data dump

1187
01:11:26,206 --> 01:11:31,533
and then you have this kind of real-time data in this form.

1188
01:11:32,275 --> 01:11:38,632
So, we try to obtain the real-time data here

01:11:38,732 --> 01:11:40,489
on the script because...

1190
01:11:41,308 --> 01:11:44,046
About the trip data, I will briefly talk about it

1191
01:11:44,146 --> 01:11:47,874
a bit later using the London shared bike.

1192
01:11:48,700 --> 01:11:51,177
So, again, we do the same thing.

1193
01:11:51,277 --> 01:11:52,636
We obtain the link.

1194
01:11:52,736 --> 01:11:56,233
We don't need an API key so it's relatively simple.

1195
01:11:56,470 --> 01:11:57,596
We get this.

1196
01:11:58,316 --> 01:12:04,323
So, the response of the request would be called Citibike.

1197
01:12:04,680 --> 01:12:08,676
And let's see what Citibike looks like.

1198
01:12:10,448 --> 01:12:12,865
It's not too bad. You have the station IDs,

1199
01:12:12,965 --> 01:12:15,822
station names, and then the locations,

1200
01:12:15,922 --> 01:12:19,158
the co-ordinates, and the status and so on.

1201
01:12:19,238 --> 01:12:22,337
So, this is relatively simple.

1202
01:12:23,816 --> 01:12:28,188
And then, if you try to arrange it a little bit

1203
01:12:28,566 --> 01:12:30,793
from this Citibike data frame,

1204
01:12:30,893 --> 01:12:34,490
then I use it.

1205
01:12:35,847 --> 01:12:39,294
I called it the station list.

1206
01:12:41,283 --> 01:12:43,734
I arranged it a little bit.

1207
01:12:44,424 --> 01:12:46,118
Then you can see that

1208
01:12:47,215 --> 01:12:50,169
we could obtain this data frame

1209
01:12:50,269 --> 01:12:52,424
which is quite tidy,

1210
01:12:52,803 --> 01:12:54,547
if you try it like this.

1211

01:12:54,927 --> 01:13:00,230
I can also put this in the chat if you are trying.

1212
01:13:04,250 --> 01:13:07,514

You can just run this and then you can check the column links

1213
01:13:07,614 --> 01:13:10,018
and then you can see that this is quite neat.

1214
01:13:12,118 --> 01:13:13,753
Station, yeah.

1215

01:13:13,853 --> 01:13:14,967
Can check it.

1216
01:13:17,357 --> 01:13:21,628
You can see that you have the available docks

1217
01:13:21,728 --> 01:13:23,733
and also, latitude and longitude,

1218

01:13:25,562 --> 01:13:26,980
and the status.

1219
01:13:28,091 --> 01:13:31,215
And then also you can get the timestamps.

01:13:32,201 --> 01:13:34,794
Oh my god, this is from 2016.

1221
01:13:34,894 --> 01:13:37,900
But it's supposed to be much more up-to-date.

1222
01:13:42,921 --> 01:13:45,166
Most of these different companies,

1223
01:13:45,266 --> 01:13:47,325
they work in very similar ways

1224
01:13:47,425 --> 01:13:48,833
and it's quite straightforward.

1225
01:13:48,933 --> 01:13:52,883
And then, because they have this combined way of

1226
01:13:52,983 --> 01:13:54,562
inputting bike data,

1227
01:13:54,771 --> 01:13:56,930
usually it's not as complicated,

1228
01:13:57,030 --> 01:13:59,648
and then you could try on your way.

1229
01:14:00,028 --> 01:14:03,878
And then, with Nextbike, the bike company that's

1230
01:14:03,978 --> 01:14:06,226
also operating shared biking in Glasgow,

1231
01:14:06,326 --> 01:14:10,034
we could also obtain that in a very similar way.

1232
01:14:11,011 --> 01:14:16,950
Like the station data and the status and the number of available bikes.

1233
01:14:17,670 --> 01:14:20,341
So, yeah, this could be done.

1234
01:14:23,218 --> 01:14:26,806
So, this brings us very briefly to

1235
01:14:26,906 --> 01:14:29,511
the last part.

1236

01:14:30,012 --> 01:14:35,579
Actually, this is a very simplified version of

1237
01:14:35,779 --> 01:14:37,827
what I... I intend to share

1238
01:14:37,927 --> 01:14:42,663
a very simplified version of the paper I was talking about earlier.

1239
01:14:44,404 --> 01:14:50,885
Which is something that I am trying to share.

1240
01:14:53,053 --> 01:14:55,318
Wait a second. It's a bit slow.

1241
01:15:05,500 --> 01:15:10,208
So, that was the analysis, the application that I was talking about

1242
01:15:10,308 --> 01:15:14,129
a bit earlier in the first half of the session.

1243
01:15:14,538 --> 01:15:16,795

So, the workflow is a bit like this.

1244
01:15:16,895 --> 01:15:21,344
Of course, I don't expect you to follow every step right now.

1245
01:15:21,444 --> 01:15:24,163
But then, of course, you import the libraries.

1246
01:15:24,887 --> 01:15:28,078
And then, because this is a data set

1247
01:15:28,178 --> 01:15:31,655
with the detailed trip data.

1248
01:15:32,680 --> 01:15:34,518
You can see it looks like this.

1249

01:15:35,057 --> 01:15:38,942
You have the start time, end time, duration,

1250
01:15:39,042 --> 01:15:41,070
and then also the station number.

01:15:41,170 --> 01:15:42,949
And you can do all sorts of things,

1252
01:15:43,155 --> 01:15:47,853
including arranging these numbers

1253
01:15:47,953 --> 01:15:49,681
in terms of stations.

1254
01:15:51,933 --> 01:15:54,708
So, the idea is that

1255
01:15:55,019 --> 01:15:56,037
we could also...

1256
01:15:56,425 --> 01:15:58,855
Because when I was talking about a paper,

1257
01:15:58,955 --> 01:16:02,831
you remember that we had this suspension period and so on,

1258
01:16:03,151 --> 01:16:09,868
so that we could introduce some dummy variables

1259
01:16:13,766 --> 01:16:16,715
to mark the period during the suspension

1260
01:16:16,815 --> 01:16:20,051
and after the suspension, and so on.

1261
01:16:20,361 --> 01:16:23,018
And also introduce the treatment group

1262
01:16:23,118 --> 01:16:26,897
and the control group for the different stations.

1263
01:16:27,834 --> 01:16:31,846
So, the workflow is something like this.

1264
01:16:31,946 --> 01:16:34,700
Where you introduce the buffer

1265
01:16:34,800 --> 01:16:38,387
and then you introduce the dummy variables

1266
01:16:38,694 --> 01:16:41,343
for the treatment and control stations,

1267
01:16:41,443 --> 01:16:42,897
the suspension period,

1268
01:16:43,093 --> 01:16:47,791
and also clean up the data about longer trips

1269
01:16:48,048 --> 01:16:49,615
that you might want to draw up

1270
01:16:49,715 --> 01:16:53,652
or trips that you do not want to include in your analysis,

1271
01:16:53,752 --> 01:16:56,818
such as having the same origin and destination.

1272
01:16:58,612 --> 01:17:00,348
We also include weather data.

1273

01:17:00,545 --> 01:17:02,675
So, it also took some time

1274
01:17:02,775 --> 01:17:07,163
to just put in the weather data by day

1275
01:17:07,597 --> 01:17:12,114
and arranging them such that it could be combined with

1276
01:17:12,214 --> 01:17:16,483
the panel data set and also the public holidays and so on.

1277

01:17:17,621 --> 01:17:21,579
So, if we go back to the R Script.

1278
01:17:22,057 --> 01:17:29,452
Of course, because I couldn't share that particular data set.

1279
01:17:29,789 --> 01:17:33,647
So, that's why I think that we could do it like this.

1280
01:17:34,084 --> 01:17:36,843
You could try, if you want to try,

1281
01:17:36,843 --> 01:17:39,741
you can import a few libraries.

1282

01:17:39,865 --> 01:17:41,450
You might not need all of them.

1283
01:17:41,550 --> 01:17:44,499
This is just a start. I will share the whole thing later.

1284
01:17:45,584 --> 01:17:49,001
And because the London one,

1285

01:17:49,101 --> 01:17:54,227
if you try to get access to the London bike share data,

1286
01:17:56,015 --> 01:17:58,495
it's actually pretty comprehensive.

1287
01:17:59,463 --> 01:18:02,062
Let me try to get to it.

1288
01:18:02,781 --> 01:18:03,848
Yeah, here.

1289
01:18:26,709 --> 01:18:28,308
If you go there,

1290
01:18:31,867 --> 01:18:35,006
you should be able to see this bucket loading thing.

1291
01:18:36,000 --> 01:18:38,039
Because I was just creating the example,

1292
01:18:38,139 --> 01:18:42,869
I got a bit lazy and I saw this ZIP file

1293
01:18:43,438 --> 01:18:46,788
for 2015 so I just downloaded it

1294
01:18:47,366 --> 01:18:48,685
and then read it.

1295
01:18:49,773 --> 01:18:51,780
It's somewhere. But then you can see that

1296
01:18:52,178 --> 01:18:55,266
they have data for every single week.

1297
01:18:56,002 --> 01:18:57,616
And then, if you scroll down,

1298
01:18:57,716 --> 01:19:00,614
you can see the older data

1299
01:19:00,714 --> 01:19:02,940
in a ZIP file.

1300
01:19:03,101 --> 01:19:06,619
So, if you just want to try something to see if it works,

1301
01:19:06,719 --> 01:19:07,987
just download one of these.

1302
01:19:08,087 --> 01:19:10,135
And then, what I did is that

1303
01:19:10,235 --> 01:19:11,982
I set up a folder

1304
01:19:12,291 --> 01:19:14,439
to house this part.

1305
01:19:14,687 --> 01:19:16,444

And then, with this folder,

1306
01:19:16,713 --> 01:19:18,829
I created a file list

1307
01:19:18,888 --> 01:19:24,533
and then I read all these files.

1308
01:19:24,633 --> 01:19:28,347
Because if you actually look at the folder,

1309
01:19:28,615 --> 01:19:34,093
if for the whole 2015 you have one file

1310
01:19:34,193 --> 01:19:35,441
for each week,

1311

01:19:36,190 --> 01:19:39,407
you end up getting a pretty big data set.

1312
01:19:40,295 --> 01:19:42,843
So, yeah, let's do this.

01:19:44,791 --> 01:19:46,389
It might take some time.

1314

01:19:53,123 --> 01:19:55,529
After you download it, you can try it.

1315
01:19:58,330 --> 01:20:02,928
I'll just put this here in case you want to follow right now.

1316
01:20:03,627 --> 01:20:06,519
If you have a fast enough connection.

1317
01:20:07,736 --> 01:20:09,885
Of course, this is just my folder path,

1318
01:20:09,985 --> 01:20:11,833
which you will have to change.

1319
01:20:13,854 --> 01:20:15,563
And then, if you follow this,

1320
01:20:15,663 --> 01:20:19,681
then it will be reading these files.

1321
01:20:20,110 --> 01:20:25,272
And it will be called London bike share.

1322
01:20:25,497 --> 01:20:26,848
If we click into it,

1323
01:20:27,185 --> 01:20:30,313
you can see that it's really pretty huge.

1324
01:20:31,518 --> 01:20:36,247
I think it's almost 10 million, right?

1325
01:20:36,347 --> 01:20:37,916
If I read correctly.

1326
01:20:39,253 --> 01:20:44,423
While the one for Nextbike is like 10% of this size, I think,

1327
01:20:44,523 --> 01:20:46,331
or even less.

1328
01:20:47,274 --> 01:20:51,365
So, it would be more effective

1329

01:20:51,465 --> 01:20:57,840
if you can read this using fread,

1330
01:20:58,074 --> 01:21:00,894
I suppose, if you're familiar with it.

1331
01:21:01,294 --> 01:21:03,862
And then, about the location of the station,

1332
01:21:03,962 --> 01:21:06,559
then it gets more interesting

1333
01:21:06,659 --> 01:21:10,685
because it actually took me some time to dig it out

1334
01:21:11,204 --> 01:21:16,271
and surprisingly, it's actually not from direct download.

1335

01:21:16,371 --> 01:21:21,029
It's more like from a freedom of information request,

1336
01:21:21,129 --> 01:21:25,437
that people were requesting the location of the stations.

1337
01:21:26,447 --> 01:21:29,355

Then I found the file of the locations of stations

1338
01:21:29,455 --> 01:21:30,542
around that time.

1339
01:21:30,642 --> 01:21:32,440
Then I read it.

1340
01:21:36,719 --> 01:21:37,875
Then I tried to,

1341
01:21:38,138 --> 01:21:42,178
because it's a bit messy.

1342

01:21:42,278 --> 01:21:43,426
If you can see.

1343
01:21:43,526 --> 01:21:45,782
I will just show it very briefly.

01:21:45,882 --> 01:21:49,670
You can see that the station name, here you have the station name

1345
01:21:49,770 --> 01:21:54,058
and then you have some sort of local area

1346
01:21:54,717 --> 01:21:57,807
in your trip data set.

1347
01:21:58,045 --> 01:22:01,699
But then, if you look at the station data set,

1348
01:22:01,977 --> 01:22:03,066
I have it,

1349
01:22:04,586 --> 01:22:06,964
you can see that it's slightly different.

1350
01:22:07,172 --> 01:22:10,642
So, what I was doing here is

1351
01:22:10,742 --> 01:22:13,071
just renaming them

1352
01:22:13,171 --> 01:22:17,048
and trying to remove the part of

1353
01:22:17,148 --> 01:22:20,895
the station name so that they could match.

1354
01:22:20,995 --> 01:22:24,473
I tried to extract the part before the comma.

1355
01:22:26,763 --> 01:22:28,061
So, afterwards,

1356
01:22:28,852 --> 01:22:31,174
you get something that is quite neat

1357
01:22:31,274 --> 01:22:34,535
and, actually, you could try to arrange it,

1358
01:22:36,584 --> 01:22:39,487
you could try to combine them together.

1359
01:22:39,865 --> 01:22:43,869
And then, here, this is just something simple,

1360

01:22:43,969 --> 01:22:46,347
because if you look back to your station,

1361
01:22:46,792 --> 01:22:49,402
to your trip data set,

1362
01:22:49,502 --> 01:22:52,964
you can see these names are all separated by spaces

1363
01:22:53,064 --> 01:22:55,614
and sometimes spaces could cause problems.

1364
01:22:55,714 --> 01:22:57,662
So, I replaced them with dots.

1365
01:22:58,648 --> 01:23:04,950
I mean, it's usually up to what you want to do with them.

1366
01:23:05,050 --> 01:23:07,347
Or you can replace it with something else.

01:23:08,307 --> 01:23:12,084

And then, the next one would be

1368
01:23:12,289 --> 01:23:14,532
just to merge them

1369
01:23:14,889 --> 01:23:17,936
so that we get a different data frame

1370

01:23:21,751 --> 01:23:23,152
that we could use.

1371
01:23:25,727 --> 01:23:29,905
Let's say, I will need the locations of these stations

1372
01:23:30,296 --> 01:23:33,467
to plot them on a map or something,

1373

01:23:34,017 --> 01:23:36,577
that would be pretty useful.

1374
01:23:36,677 --> 01:23:38,899
But the merging would take some time

1375

01:23:38,999 --> 01:23:40,780
so I would not run it.

1376
01:23:43,791 --> 01:23:46,631
And then, afterwards,

1377
01:23:47,242 --> 01:23:52,421
I would like to arrange the number of trips by day.

1378
01:23:52,997 --> 01:23:55,887
Actually, this is just to show that

1379
01:23:56,269 --> 01:23:59,057
sometimes we might want to do something like

1380
01:23:59,248 --> 01:24:01,517
sorting the number of trips by day

1381
01:24:01,617 --> 01:24:06,367
or we might want to plot the trip duration by day.

1382
01:24:06,597 --> 01:24:08,337
And then, if you think back,

1383
01:24:08,437 --> 01:24:12,357
this is actually, if you combine these data sets,

1384
01:24:12,457 --> 01:24:15,648
this is actually something that you find a lot

1385
01:24:16,217 --> 01:24:17,895
in places like Kaggle

1386
01:24:17,995 --> 01:24:21,283
where you can find the number of trips dataset

1387
01:24:21,383 --> 01:24:23,009
combined with the weather data set

1388
01:24:23,109 --> 01:24:26,408
where people are using these data sets to

1389
01:24:26,508 --> 01:24:28,165
run their algorithm from.

1390
01:24:28,636 --> 01:24:31,173
So, my point is that

1391

01:24:31,273 --> 01:24:35,052
if you get the more complicated data dump,

1392
01:24:35,271 --> 01:24:37,960
then you could easily reduce it back

1393
01:24:38,060 --> 01:24:40,700
to something that you could use very easily.

1394
01:24:41,160 --> 01:24:44,432
Because here, I didn't include everything.

1395
01:24:44,532 --> 01:24:49,181
But then, the next step that I would share would be

1396
01:24:49,281 --> 01:24:52,332
something like, after arranging them by day,

1397
01:24:52,432 --> 01:24:54,833
I will combine it.

1398
01:24:55,134 --> 01:24:57,500

Actually, I find this quite interesting because

1399
01:24:57,600 --> 01:25:02,312
I find daily restriction of

1400
01:25:02,523 --> 01:25:05,641
COVID lockdown restrictions in London.

1401
01:25:06,742 --> 01:25:08,252
So, potentially,

1402
01:25:08,352 --> 01:25:13,754
if I were using the 2020 and 2021 data sets,

1403
01:25:13,881 --> 01:25:17,121
then I could easily run some analysis

1404
01:25:17,632 --> 01:25:22,927
after I combine these for daily number of trips

1405
01:25:23,027 --> 01:25:25,648
and then I also get the station level data,

01:25:25,748 --> 01:25:31,266
and also, every day, what the restrictions look like.

1407
01:25:31,507 --> 01:25:32,625
This is very interesting.

1408
01:25:32,725 --> 01:25:35,996
You can get it from the data for later.

1409
01:25:36,096 --> 01:25:41,726
But then, it's also on the Department for Transport site.

1410
01:25:42,865 --> 01:25:44,725
The reason that I highlight this is that

1411
01:25:44,825 --> 01:25:47,736
you can see you have the school closure dummy,

1412
01:25:47,926 --> 01:25:49,157
pub closure dummy,

1413
01:25:49,257 --> 01:25:51,928
shop closure dummy, and then by date.

1414
01:25:52,124 --> 01:25:55,049
And that's pretty useful information.

1415
01:25:55,149 --> 01:25:58,619
If you try to run it and relate it to

1416
01:25:58,719 --> 01:26:01,959
other data sets, all you need is the date to combine them.

1417
01:26:04,190 --> 01:26:07,322
I also mentioned that, in terms of the stations,

1418
01:26:07,422 --> 01:26:12,361
in terms of what you have between the treatment stations.

1419
01:26:12,822 --> 01:26:16,254
Let's say that you can identify that

1420
01:26:16,354 --> 01:26:18,444
some stations you have a hypothesis for

1421
01:26:18,725 --> 01:26:20,656
saying that some stations may be

1422
01:26:20,756 --> 01:26:23,585
more affected by these measures than the others.

1423
01:26:24,116 --> 01:26:27,466
Then, you can carry out the same type of analysis

1424
01:26:27,566 --> 01:26:32,126
that I was just talking about earlier on.

1425
01:26:32,616 --> 01:26:37,836
Similar to that research paper that I was talking about.

1426
01:26:38,731 --> 01:26:39,914
So, this is the idea.

1427
01:26:40,014 --> 01:26:42,100
Although, I didn't show every step

1428
01:26:45,260 --> 01:26:49,420
or the complete codes for now.

1429
01:26:49,721 --> 01:26:54,432

But I'm going to share it and I hope that you can see,

1430
01:26:55,214 --> 01:26:57,143
after you get some of this data,

1431
01:26:57,576 --> 01:27:02,336
how you can proceed to get more from them

1432
01:27:02,436 --> 01:27:05,425
by developing a data set

1433
01:27:05,525 --> 01:27:08,263
and a workflow that goes from there.

1434
01:27:08,451 --> 01:27:12,448
And there are numerous research possibilities for that

1435

01:27:12,548 --> 01:27:18,839
as a citizen or even perhaps as a student

1436
01:27:18,939 --> 01:27:22,829
to look through these kinds of things, or even as a researcher, you might

01:27:23,470 --> 01:27:27,970
want to explore your research questions

1438
01:27:28,219 --> 01:27:30,480
with this type of data.

1439
01:27:31,170 --> 01:27:34,810
So, this is it for now.

1440
01:27:35,930 --> 01:27:41,710
I understand that I didn't really have much time to cover all the steps

1441
01:27:41,908 --> 01:27:45,640
so you might find it a bit puzzling

1442
01:27:45,740 --> 01:27:47,319
and a bit chaotic at times.

1443
01:27:47,419 --> 01:27:51,409
But I will try to share the materials

1444
01:27:51,509 --> 01:27:54,930
and the links here so you could try it.

1445
01:27:55,497 --> 01:27:58,657
And you could try it later.

1446
01:27:58,757 --> 01:28:01,226
So, this is it.

1447
01:28:01,977 --> 01:28:03,017
Thanks.

